www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2007 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	er
	GCE O LEVEL – October/November 2007	4024	100

Abbreviations

cao correct answer only

oe or equivalent

soi seen or implied

www without wrong working

aCambridge.com

Page 3	Mark Scheme	Syllabus
-	GCE O LEVEL – October/November 2007	4024

Pag	<u> </u>	Mark Scheme			Syllabus Per	
ı ag	. .	GCE O LEVEL – October/Novembe	r 2007		4024	
		001 0 11111 0010301/1101011130	. 2001		OC AL	
Question Number				Sub (part)	Syllabus 4024 er 4024 Comments	Aide .
1		200		mark		S.G.
•	(a) ta	an $\widehat{CAB} = \frac{200}{65}$ oe $\widehat{CAB} = 72.(0)^{\circ} \text{accept } 71.95 \text{ to } 72.05$		M1 A1 (2)		OH
	0	igs $\frac{750}{5}$ soi 1.15 <u>h</u> oe 3 05 or 22 56 + their 00 09 \checkmark		M1 A1 B1 (3)	Their 00 09 is whatever they think the time is, written in 24 hr. clock style.	
		$PRS = \frac{300}{750}$ or $PSR = \frac{300}{750}$ $PRS = 66.4^{\circ}$ or $PSR = 23.6^{\circ}$ (Bearing of S from R =) 113.6, accept 114, or 180 – their $PRS \nearrow$ or 90 + their $PSR \nearrow$		M1 A1 B1 (3)	Expect these angles to be identified, possibly by the final answer. (Degree signs optional)	
2	(a) (i) 2	2.71 After B0, 2.709, or their 2.709 correctly round or 2.7(0) www	ded,	B2 (2)		
		Final ans (b=) $(\pm)\sqrt{x^2 - 2ax}$ oe After B0, $x - a = \sqrt{a^2 + b^2}$ soi	M 1	В3	e.g. $(\pm)\sqrt{(x-a)^2-a^2}$	
		and $(x-a)^2 = a^2 + b^2$ further	M1	(3)		
		8x - 27 oe After B0, $5x$ or $8x + k$ seen	В1	B2 (2)		
		Their $8x - 27 < 300$ (provided it is an expression i $x < 40.875$ (accept 40.9 or 41) after M0, Final ans. 40.875 (accept 40.9 or 41)	SC1	M1 A1 (2)		
	(iii) a	40 or their (b)(ii) rounded down to the next who	ole	B1 \(\frac{(1)}{(10)} \)		

		man
Page 4	Mark Scheme	Syllabus
	GCE O LEVEL – October/November 2007	4024

GCE O LEVEL – October/November 2007 4024 Question Number 3 (a) (i) 56 (ii) 68 or 180 - 2× their(i) $\sqrt{}$ (b) (i) $\widehat{WXV} = \widehat{YXZ}$ (vertically opposite) or $\widehat{VWX} = \widehat{XZY}$ (\widehat{WV} / YZ) stated Convincingly deduces triangles (\widehat{VWX} and \widehat{YZX}) are equiangular (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (iii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (YZ =) 100 cao	red for 1 st B1 ccept al angles of the above appropriate.
(b) (i) $\widehat{WXV} = \widehat{YXZ}$ (vertically opposite) or $\widehat{VWX} = \widehat{XZY}$ (\widehat{WV} / YZ) stated B1 Convincingly deduces triangles (\widehat{VWX} and \widehat{YZX}) are equiangular (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (iii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (iv) Reason not requision in the provided that the used is justified, similarity has not assumed. (iv) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (iv) $\frac{YZ}{25} = \frac{160}{40}$ oe soi	red for 1 st B1 scept al angles of the above appropriate.
(b) (i) $W\widehat{X}V = Y\widehat{X}Z$ (vertically opposite) or $V\widehat{W}X = X\widehat{Z}Y$ ($WV // YZ$) stated B1 Convincingly deduces triangles (VWX and YZX) are equiangular (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (iii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi M1 A1	red for 1 st B1 except al angles of the above appropriate.
(b) (i) $\widehat{WXV} = \widehat{YXZ}$ (vertically opposite) or $\widehat{VWX} = \widehat{XZY}$ (\widehat{WV} / YZ) stated B1 Convincingly deduces triangles (\widehat{VWX} and \widehat{YZX}) are equiangular (ii) $\widehat{YZ} = \frac{160}{40}$ oe soi (iii) $\widehat{YZ} = 100$ occo	red for 1 st B1 ccept al angles of the above appropriate.
(b) (i) $\widehat{WXV} = \widehat{YXZ}$ (vertically opposite) or $\widehat{VWX} = \widehat{XZY}$ (\widehat{WV} / YZ) stated B1 Convincingly deduces triangles (\widehat{VWX} and \widehat{YZX}) are equiangular (ii) $\widehat{YZ} = \frac{160}{40}$ oe soi (iii) $\widehat{YZ} = 100$ are	red for 1 st B1 except al angles of the above appropriate.
(b) (i) $\widehat{WXV} = \widehat{YXZ}$ (vertically opposite) or $\widehat{VWX} = \widehat{XZY}$ ($\widehat{WV} / \!\!/ YZ$) stated B1 For the 2^{nd} B1 ac (i) 3 pairs of equivariant stated, with one of reasons given as (ii) 2 pairs of equivariant stated, with one of reasons and conclude that the used is justified, similarity has not assumed. (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi M1 ($\widehat{VX} = 100$ one of the 2^{nd} B1 ac (ii) 3 pairs of equivariant stated, with one of reasons given as (iii) 2 pairs of equivariant stated, with one of reasons and conclude that the used is justified, similarity has not assumed.	red for 1 st B1 ccept al angles of the above appropriate.
(b) (i) $W\widehat{X}V = Y\widehat{X}Z$ (vertically opposite) or $V\widehat{W}X = X\widehat{Z}Y$ ($WV // YZ$) stated B1 Convincingly deduces triangles (VWX and YZX) are equiangular (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (iii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi M1 A1	red for 1 st B1 ccept al angles of the above appropriate.
(b) (i) $\widehat{WXV} = \widehat{YXZ}$ (vertically opposite) or $\widehat{VWX} = \widehat{XZY}$ (\widehat{WV} / YZ) stated B1 For the 2^{nd} B1 ac (i) 3 pairs of equivated, with one or reasons given as (ii) 2 pairs of equivated, with one or reasons given as (iii) 2 pairs of equivated and conclusion of corresponding provided that the used is justified, similarity has not assumed. (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi M1 (VZ =) 100 cec.	acept al angles of the above appropriate.
convincingly deduces triangles (VWX and YZX) are equiangular (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi Reason not require the probability of the	acept al angles of the above appropriate.
convincingly deduces triangles (VWX and YZX) are equiangular (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi B1 For the 2^{nd} B1 ac (i) 3 pairs of equivalent stated, with one or reasons given as (ii) 2 pairs of equivalent reason and conclusion upon of corresponding provided that the used is justified, similarity has not assumed. A1	acept al angles of the above appropriate.
convincingly deduces triangles (VWX and YZX) are equiangular (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (i) 3 pairs of equivalent stated, with one or reasons given as (ii) 2 pairs of equivalent reason and conclusion upon of corresponding provided that the used is justified, similarity has not assumed. (VX =) 100 and	al angles of the above appropriate.
convincingly deduces triangles (VWX and YZX) are equiangular B1 (2) (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (iii) A solution u of corresponding provided that the used is justified, similarity has no assumed. (iv) $\frac{YZ}{25} = \frac{160}{40}$ oe soi A1	appropriate.
convincingly deduces triangles (VWX and YZX) are equiangular (ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi	
(ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi (III) A solution u of corresponding provided that the used is justified, similarity has no assumed. (IVZ =) 100 and	
(ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi M1 A1 of corresponding provided that the used is justified, similarity has not assumed.	
(ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi M1 A1 used is justified, similarity has no assumed.	sides,
(ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi M1 A1	
(ii) $\frac{12}{25} = \frac{100}{40}$ oe soi M1 A1	
(YZ =) 100 cm	
1 (/ / -) 100 202	
1 (#/ I	
(6)	
4 (a) <u>Final ans.</u> \$ 13.44 or 1344 <u>c</u> B1	
(1)	
(b) $\frac{35-28}{28}$ × (100) oe	
187 - 28 × (100) 60 M1	
25(%)	
A1	
After M0, use of figs $\frac{35}{28}$ soi SC1	
(2)	
(c) 5(%)	
25 × 1200 200	
After B0 figs $\frac{35 \times 1200 - 399}{35 \times 1200}$ oe M1 (2)	
33×1200	
(d) (\$) 4	
After B0 ÷ by 115 M1	
× by 100 indep. M1	
After B0, M0 115 seen SC1	
(3) (8)	

Page 5	Mark Scheme	Syllabus	er
-	GCE O LEVEL – October/November 2007	4024	Do.

Page	e 5	Mark Scheme		Syllabus	er]
		GCE O LEVEL – October/November 2007		4024	No.	
					Call	
Ousstian			C.1		767	
Question Number			Sub (part)			00
5	question.	e in one part may be used to earn M marks in any other part of the Throughout, accept equivalent complete methods and decimal angles degree sign, but degree sign essential if answer in degrees and minutes.	mark		Papa Cambril	COM
	(a) (i) (A	$(AD^2 =)24^2 + 16^2 \pm 2 \times 24 \times 16 \cos 112$ soi $(D =)\sqrt{24^2 + 16^2 - 2 \times 24 \times 16 \cos 112}$ (= $\sqrt{1119.697}$)	M1 M1			
		D = 33.5 (from 33.46, accept 33.45 to 33.55)	A2			
	A	After A0 and at least M1, 1119.697 seen				
	(a.	or $(AD =)23.3$ (from $\sqrt{544.30}$) A1	(4)			
	(ii) ⁵	$\frac{\sin(B\hat{C}D)}{16} = \frac{\sin(180 - 112)}{20}$ oe	MI			
	s	$\sin B\widehat{C}D = \frac{16\sin(180 - 112)}{20} \ (=0.7417)$	M1			
	(a	$B\widehat{C}D = 47.9$ (from 47.88), accept 47.85 to 47.95 nw 2)	A1 (3)			
	(iii) -	$\frac{1}{2} \times 24 \times 16 \sin 112$ oe	MI			
	=	178 (cm ²)	A1 (2)			
	(b) 60 ((k) cao	В1			
			(1)			
			(10)			

Page 6	Mark Scheme	Syllabus
-	GCE O LEVEL – October/November 2007	4024

Page 6		_	Syllabus
	GCE O LEVEL – October/November 200	7	4024
			Ph
Question Number		Sub (part) mark	Comments Comments For diameter 5, only method marks are available throughout.
6			For diameter 5, only method
	and a	B1	marks are available throughout.
(a)(i) 6	(1)	
1	(ii) (a) π (their 15) ²	MI	
	707 (cm ²) accept 706.5 to 707.5	A1	
	(b) $\frac{1}{6}(\pi 15^2 - 7\pi 5^2)$ oe or $\frac{1}{6}(their(a) - their 7\pi 5^2)$	(2)	
	or $\frac{theirA\ddot{O}B}{360}$ their $\pi 15^2 - \frac{theirA\ddot{O}B}{360}$ their $\pi 5^2 - their\pi 5^2$	M1	
	= 26.2 (cm²) accept 26.15 to 26.25	Al	
		(2)	
0	\ (:\ 60(0)	В1	Accept radian form
(6) (i) 60(°)	(1)	Accept tadian form
	(ii) $\frac{their(i)}{360} \times 2\pi 5$	М1	Expressions may be constructed using radians.
	$\frac{their(i)}{360} \times 2\pi (their15)$	M1	
	$\frac{their(i)}{360} \times 2\pi 5 + \frac{their(i)}{360} \times 2\pi (their 15) + 2\pi 5 \text{ oe indep}$	МІ	
	= 52.4 (cm) (accept 52.35 to 52.45)	Al	
	After MO, 2π5 seen SC1		i.e. if no other marks are scored, a correct circumference
	(anw 2)	(4)	of a small circle gets 1 mark.
		(10)	

		7.
Page 7	Mark Scheme	Syllabus
	GCE O LEVEL – October/November 2007	4024

Page 7	Mark Scheme	S	yllabus	er
	GCE O LEVEL – October/November 200	7	4024	2
				dh
Duestion		Sub (part) mark	yllabus 4024 Comments	Origi
(a)(i)	$\frac{k}{3+2+1} \times 75 \ k = 1,2 \ or \ 3.$	MI		
				- 1
	= 25 (litres)	A1 (2)		
	On at the state of	1-2		
	e.g. 40, 35, 36 (cents/litre) seen Final ans. 25 (litre bag)	MI		
	(anw 0)	A1 (2)		
		1-2		11
(b)(i)	$\frac{1}{3}\pi 10^2 \times 24 \text{ soi}$	MI		
4	1 71			
		M1		1
	2199.1or their <u>volume</u> in cm ³ \div 10 ³ indep	M1		
	2.20 (litres) (accept 2.195 to 2.205) cao	A1		1
	(anw 3)	(4)		
(11)	75	MI		1
(n)	$\frac{75}{theirb(i)}$ soi	MI		
	34 or their (ii) rounded down 🗸			ľ
	of their (ii) rounded down v	AI		
		(2)		0
1 1				
	Use of (ratio of vols. =) 10 ³ : 5 ³ seen			
1111111	or use of $\frac{1}{3}\pi 5^2 \times 12 - \frac{1}{3}\pi 2.5^2 \times 6 \ (= 274.89)$	MI		1
		1 "		
	272 or their (b)(ii) \times 8\for $\frac{75}{their 2.199} \times$ 8\sqrt{rounded down}			
	their 2.199 V	A1_		1
		(2)		1
		2440		
		(12)		
				ł
				4

Page 8	Mark Scheme	Syllabus	
	GCE O LEVEL – October/November 2007	4024	

estion umber		Sub (part) mark	Comments
8	Condone inaccuracies of up to 1 mm in plotting and drawing. If plots are not visible, allow P marks if curve passes within 1 mm of correct plot. Both P and dep C marks can be recovered following a grossly wrong plot if the plot is ignored and the curve passes within 1 mm of the correct point. Lined or plain paper used: no penalty, extend tolerances to 2 mm. Penalties deducted from P and C marks only: Wrong scale(s) -1 once. Interchanged axes: no penalty if labelled, -1 otherwise. Non-uniform scale: -2 after marking as generously as possible. (a) (x =) 12	ві	Comments
	or -2 After B0, correct factors of their quadratic or their $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ M1	(2)	
	(b)(i) All 6 given points plotted. 4 correct points P1	P2	
	Smooth curve, not grossly thick, through all plotted points, dep on PI	C1 (3)	
	(ii) Curve drawn to (12,0) or √ from (a)	D1 (1)	Ignore drawn to negative x Follow through only if the shape remains reasonably parabolic.
	(iii) 45 (m) or 45 \pm 0.5 if read from the graph.	(1)	
	(iv) Using $y = 30$ (e.g. 0.6 to 0.8 and/or 9.3 to 9.5 seen) (distance travelled =) 8.5 to 8.9 (m)	M1 A1	
	(c)(i) $(p =) 49$	(2) B1	
	(ii)(a) 49 (m) cao	В1	
	(b) 5 (m) cao	B1 (3)	
		(12)	

Page 9 Mark Scheme		Syllabus
-	GCE O LEVEL – October/November 2007	4024

Question Number		Sub (part) mark	Comments
9	$\mathbf{(a)} \begin{pmatrix} 0 \\ -2 \end{pmatrix}$	B1 (1)	Comments
	(b)(i)(a) - b	BI	
	(b) $2(b-a) \text{ or } 2b-2a$	ві	
	(c) $2\mathbf{a}$ or their(a) + $3\mathbf{a} + \mathbf{b} - \mathbf{a} \checkmark$	ві√	Must be simplified.
	(d) $\mathbf{a} \text{ or } -2\mathbf{b} + 3\mathbf{a} + \text{ their (b) } \checkmark$	BI√ (4)	Must be simplified
	(ii)(a) Trapezium dep on the ans. a in (i)(d) Two sides (AD, BC) // also dep on the ans. a in (i)(d)	B1 B1 (2)	
	(b) 1:2:3 cao independent (c) In this part give -1 once for omission of appropriate reason.	B1 (1)	
	(i) $(\widehat{CEA} =)$ 146 (°): Angle in the same segment.	Bi	Or opposite angles of cyclic quads AOCF and AECF
	(ii) (\widehat{CBA} =) 73 (°): Angle at the centre twice angle at circumf.	BI	
	(iii) ($\widehat{CFA} = 34$ (°): Angles in opposite segments supplementary	ві	May have been justified in (i)
	(iv) (DCF =) 73 (°) or 180 – (their(ii) + their(iii)) ✓ Opposite angles in a cyclic quad and/or angle sum of a triangle.	BI /	
	(anw 3)	(12)	

Page 10 Mark Scheme		Syllabus
	GCE O LEVEL – October/November 2007	4024

		GCE O LEVEL – October/November 2007		4024 73 _{PC}
Question Number			Sub (part)	Syllabus 4024 Comments
10	The gen	neral instructions given in Q8 apply here.	mark	
	(a)(i) 4× condone or omissi	$6.75 + 56 \times 125 + 84 \times 175 + 76 \times 225 + 36 \times 275 + 4 \times 325$ e consistent use of other value in each interval, and one error ion	MI Al	
	50	300 (g) oe cao		
	100	93 (g) (accept 192.5 to 193.5) or their (i) ÷ 260 ✓	B1 \(\square (3)	E.g. if the answer only is given here, the mark is B1 + SC1.
		After M0 in (a), 50300 soi SC1 0 4 60) 144 220 256 (260)	B1 (1)	nere, the mark is B1 + SC1.
	(ii) A	All 7 points plotted	P2 /	†
	5	5 points plotted P1	1	
		curve, not grossly thick, through all plotted points, dep and ogive shape	C1 (3)	
	(iii)	(a) 190.0 to 197.5 (g) clearly intended as the answer.	B1 (1)	
	((b) Intention to read graph at 65 and 195 e.g. 152.5 to 157.5 and 230 to 235 seen	MI	
		(I.Q. range =) 72.5 to 82.5 (g)	A1 (2)	1
	(c) 260 - 5 (sa	- 144 (table value) (= 116) acks)	M1 A1 (2)	
			(12)	

Page 11	Mark Scheme	Syllabus	
	GCE O LEVEL – October/November 2007	4024	

Page 11 GCE		Mark Sche			Syllabus
		GCE O LEVEL – October/November 2007		007	4024
					ayy.
Question Number				Sub (part) mark	Comments
11		$(2-4)^2 + (9-6)^2$ oe		M1 A1	Syllabus 4024 Comments
	3.	61 or better (3.605)		(2)	
		+2y = 24 or any 3 term equivalent fter B0, $m = \frac{-3}{2}$ or $c = 12$ soi	t	B2	e.g. $y = -\frac{3}{2}x + 12$
	or	their line through (2,9) or (4,6)	В	(2)	
	(b)(i) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0		B1	
)			(a)	
		effection the line $y = x$		M1 A1	And no other transformation stated.
				(2)	
	(iii)(a	$\begin{pmatrix} -3 \\ -3 \end{pmatrix}$		В1	
		(0, -1)(h) (-3)		(1)	
	(I	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} + \begin{pmatrix} -3 \\ -3 \end{pmatrix} \text{ seen}$	dep on T1	В1	
				(1)	
	(6	e) $(h,k) = (-k-3, h-3)$ oe soi h = 0 and $k = -3$		M1 A1	Method mark must be earned here.
				(2)	
	(((1) $(0,-3)$ or (their h , their k)		Bi✓	Allow either.
				(1)	
				(12)	