UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Ordinary Level**

www.papacambridge.com MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/21 Paper 21, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2 Mark Scheme: Te GCE O LEVEL –		Teach – Ma	ners' y/Jur	version le 2010	Syllabus 4024	
				S	Section A		
Qu			Answers	Mark		Comments	
1	(a)	f(7)	= 1 as final answer	B1			
	(b)	$\frac{t-}{5}$	$\frac{2}{t} = t$	M1		Forms an equat	ion in <i>t</i> and attempts to sol
		<i>t</i> = -	$-\frac{1}{2}$	A1			
	(c)	Atte f ⁻¹ ($\begin{array}{l} \text{empt to make } x \text{ the subject} \\ (x) = 5x + 2 \end{array}$	M1 A1	[5]	SC1 for $(x =)5y$	+ 2
2	(a)	<u>66 -</u> 4	$\frac{-48}{48}$ (× 100)	M1			
		37.5	5%	A1			
	(b)	130	% oe soi	M1			
		$\frac{19.3}{1.3}$	5 o.e	M1			
		(\$)1	5	A1			
	(c)	(i)	\$88	B1			
		(ii)	\$79.20 \$2.8(0) cao	B1√ B1	ft [8]	Accept –2.8	
3	(a)	Rec	tangle 13 cm by 8 cm	B1			
	(b)	(i)	Constructs perpendicular bisector of ZY	B1		to cross rectang	le
			Arc of circle radius 9 centre X	B1		across rectangle	2
		(ii)	Labels the correct region	B1		No need to shace	le – but must be correct
	(c)	(i)	P and Q correctly positioned	B1ft			
		(ii)	(a) 42 ±1 m cao	B1		Dep on correct	P and Q
			(b) $107^{\circ} (\pm 2^{\circ})$ cao	B1	[7]		

						4	4
Pa	age 3	Mark Scheme:	Feac h	ers'	version	Syllabus	".D
		GCE O LEVEL	GCE O LEVEL – May/Jun			4024	No.
							Can.
4 (a	(a) $\frac{4(2x-1)}{(x+3)}$	$\frac{1) - 3(x+3)}{3)(2x-1)}$			Single fraction. Brackets not essential. Multiplies the first fraction by $(2x - 1)$ and the second fraction by $(x + 3)$		
	$\frac{8x - 4 - 3x - 9}{(x + 3)(2x - 1)}$				Multiplies out th terms correct	ne numerator with a	at least 1 pair of
	$\frac{5x-1}{(x+3)(2x$	$\frac{3}{(x-1)}$ oe as final answer	A1				
(b	b) Squares b	oth sides of the equation	M1				
	$m = \frac{k^2 - 2l}{2l}$	$\frac{3n}{2}$ as final answer	A1				
(c)	e) For num	$\frac{p \pm \sqrt{q}}{r}$					
	p = 4 and	r = 6	B1		s.o.i. or used		
	<i>q</i> = 208 o	r $\sqrt{q} = 14.4$	B1				
	x = 3.07, x = -1.74	Final answers	B1 B1	[9]	SC1 for both 3.0) to 3.1 and –1.7 to	–1.74 seen
5 (a)	(i) $p = 0$ r = 0	0.5, q = 0.2 .3	B1 B1				
	(ii) (a)	0.25	B1				
	(b)	0.5 × 0.2 seen 0.2	M1 A1				
(b	o) (i) 17		B1				
	(ii) $78 - x = 8$	54 soi	M1 A1	[8]	Can be implied b	by $x + 2x + 54 = 78$	
6 (a) Either 130 Other one	5° or 44° correct correct	B2 B1ft		After B0, allow $A\widehat{E}C = 68^{\circ}$ or f	SC1 for $A\hat{C}O = 2$ for sum = 180°.	$2^{\circ}, \ A\widehat{B}C = 68^{\circ},$
(b	$A\widehat{B}C = 6$ $B\widehat{C}A = 6$	8° , $BAC = 44^\circ$ and 8°	B1				
	Isosceles	triangle	B1	[5]	Dep		

	Page 4		Mark Scheme: Teachers' version GCE O LEVEL – May/June 2010			Syllabus 4024 Bitacam
7	(a)	Mid val	ue used o.e.	M1		9
		Sum of	(value \times frequency) / 80	MI		
	(b)	3.45 (ho	ours)	B1		
	(c)	Correct smooth	scale, points correct and curve	S1 P1 C1	Minus 1 each en P1 for 5 plots wl C1 reasonable cu	ror hich could form ogive urve
	(d)	(i) 3.3	(hours)	B1ft	Read at 40 ft wit	thin 0.1
		(ii) Up au	per quartile and lower artile used	M1	Upper quartile –	- 2
		2.5	(hours)	A1ft[10]	ft within 0.1	

	Page 5		Mark Scheme: GCE O LEVEL	Teachers' _ – May/Jui	Syllabus 4024		
			,	Section B			
Qu			Answers	Mark		Comments	
8	(a)	<i>p</i> =	-2.6 stated	B1			
	(b)	Sca	les	S1			
		Five Smo	e points plotted ft poth curve	P1ft C1	Lost for ruled l	ines, incomplete, very thick	
	(c)	<i>x</i> =	2.55 to 2.65	X1			
	(d)	(i)	y = x	L1			
		(ii)	Line drawn and attempt to	M1			
			read at intersect $x = 2.4(0)$ to $2.5(0)$	A1			
	(e)	-4		G1			
	(f)	(i)	Correct line drawn	T1	Tangent of grad	dient part (e)	
		(ii)	(0, 12)	Y1ft	ft from <i>their</i> att	tempted tangent	
		(iii)	y = -4x + 12	E1ft[12]	ft from <i>their</i> gr	adient and their intercept	
9	(a)	(i)	$\frac{90}{360} \times \pi \times 16$	M1	Correct formula	a and 90° used	
			+16 28.56 to 28.6(0) cm	M1 A1	Indep. Attempt	to add $2 \times radius$	
		(ii)	$\frac{90}{360} \times \pi \times 8^2$	M1	Area of cross-s	ection	
			[Their $\frac{90}{360} \times \pi \times 8^2$] $\times h$ = 800 soi	M1	Indep. Forms e	quation	
			h = 15.9(0) to 15.92 cm	A1			
	(h)	(i)	(a) $MN = 2r$	R1			
		(1)	(b) Area of triangle =	M1	Expect justifies	ation and a subtraction	
			$\frac{1}{2}$ their $(2x \times x)$		Expect justified		
			Area of sector = 16π and Subtraction	A 1			
		(ii)	$20(16\pi - x^2) = 800$	M1	Forms equation	1	
			$x^2 = 10.2$ to 10.3 x = 3.2(0) to 3.21 cm	A1 A1 [12]	Correct method	l of solution	

						Mary .	
	Page 6		Mark Scheme: GCF O I EVEL	Teachers'	version ne 2010	Syllabus Angeler	
				<u> </u>		aCan	
10	(a)	(i)	140°	B1		361	
		(ii)	$\frac{6 \times 180 - 4 \times 140}{4}$	M1	Correct method	leading to solution	
			or $3 \times 180 - 410$ or $180 - 50$ oe				
			130°	A1			
	(b)	(i)	$\tan 40^\circ = \frac{CT}{23} \text{oe}$	M1			
			CT = 19.29 to $19.3(0)$ cm	A1			
		(ii)	73×39.3 or 50×39.3	M1	Accept 20 + the	eir <i>CT</i> for 39.3	
			$\frac{1}{2} \times 23 \times (\text{their } CT) \text{ or }$	M1			
			$\frac{1}{2}(20+20+\text{their } CT) \times 23$				
			2640 to 2650 cm ²	A1			
		(iii)	10560 to 10600	B1ft	4 × their (b)(ii)		
		(iv)	(a) 146 cm 79 cm	B1 B1ft	$40 + 2 \times \text{their}$ (b)	b)(i) rounded up	
			(b) 930 to 980 cm^2 cao	B1 [12]			
1	(a)	(i)	$\begin{pmatrix} 6\\-5 \end{pmatrix}$	B1	Accept $\begin{array}{c} 6\\ -5 \end{array}$ but	not 6, -5 or (6, -5)	
		(ii)	Enlargement	M1			
			Scale factor $\frac{1}{2}$	A1	A1 and A1 not l SC1 SC1 scored	lost if transformation stated, when	
			Centre (4, 1)	A1			
		(iii)	Shear	B1			
		(iv)	y = x (+ c) y = x + 1	M1 A1	Knowing the eq	uation has gradient 1	
	(b)	(i)	<i>x</i> -coordinate $-q$ <i>y</i> -coordinate $-p$	B1 B1	SC1 for $\begin{pmatrix} -q \\ -p \end{pmatrix}$		
		(ii)	<i>x</i> -coordinate <i>q</i> <i>y</i> -coordinate – <i>p</i>	B1 B1	SC1 for $\begin{pmatrix} q \\ -p \end{pmatrix}$		
		(iii)	$\mathbf{W} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$	B1 [12]			

							Mary .	
	Page 7			Mark Scheme: Teachers' version			Syllabus	Y
				GCE O LEVEL	– May/Jur	ne 2010	4024	20
								an
12	(a)	(i)	p –	q	B1			910
		(ii)	$\frac{1}{2}($	$\mathbf{p}-\mathbf{q})+\frac{1}{4}\mathbf{p}$	M1	Correct method		Se.con
			$\frac{3}{4}$ p	$\mathbf{p} - \frac{1}{2}\mathbf{q}$ cao	A1			
	(b)	(i)	(a)	$\frac{1}{2} \times 24 \times 17 \times \sin 55^{\circ}$	M1			
				$167 \text{ to } 167.5 \text{ cm}^2$	A1			
			(b)	Attempt at cosine rule $XY^2 = 865 - 816 \cos 55$ 19.9 to 19.93 (cm)	M1 M1 A2	Correct formula SC1 for 396 to 3	and sign and correct algeb 97 seen	ra soi
		(ii)	(a)	$VZ^2 = 15^2 - 6^2$ VZ = 13.7 to 13.75 cm	M1 A1	Value of 6 and c	orrect use of Pythagoras	
			(b)	766 cm ³ (Accept 762 – 766)	B1ft [12]	ft $\frac{1}{3}$ × their (b)(i)(a) × their (b)(ii)(a)	