www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	
		GCE O LEVEL – October/November 2010	4024	
Abbr	eviations		Carl	
cao	correct answ	ver only	24	
cso	correct solu	tion only	96	
dep	dependent		Sign	
ft	follow throu	igh after error	-0	,
isw	ignore subs	equent working		
oe	or equivaler	nt		
$\alpha \alpha$	a • 1 a			W

Abbreviations

or equivalent Special Case oe SC

without wrong working anything rounding to www art seen or implied soi

	()	17		
1	(a)	$\frac{17}{21}$ oe	1	
	(b)	$\frac{5}{12}$ cao	1	
2	(a)	70	1	
	(b)	4.05	1	
3	(a)	7.06×10^{-5} cao	1	
	(b)	150	1	
4	(a)	7	1	
	(b)	6	1	
5	(a)	1.65	1	
	(b)	2:25	1	
6	(a)	(2t-3)(2t+3)	1	
	(b)	(3x-1)(x+2)	1	
7	18		2	or B1 for "k" = 2, or for $\frac{y}{50} = \frac{3^2}{5^2}$ oe
8	(±) \	$\sqrt{\frac{y-3}{2}}$ oe e.g. $(\pm) \left(\frac{y-3}{2}\right)^{\frac{1}{2}}$	2	or C1 for $\frac{\sqrt{y-3}}{2}$ or for $\sqrt{\frac{y+3}{2}}$
	(sq. root symbol must extend below the fraction line)			or for $\sqrt{\frac{3-y}{2}}$ or for $\sqrt{y-3/2}$
_				oe for all
9	(a)	(±) 5 cao	1	
	(b)	(i) 6 (ii) (1.5, 0)	1	

					my
	Pag	e 3	Mark Scheme	: Teachers' version	Syllabus
			GCE O LEVEL – C	October/November 2010	4024
					Call
10	(a)	4 or () ? only	1	Office

	1			24
10	(a)	$\frac{4}{5}$, or 0.8, only	1	Marida
	(b)	$25x^6$ cao	1	
	(c)	$\frac{4}{n^8}$	1	
11	(a)	8	1	
	(b)	{5, 6, 7, 8, 9}	1	
	(c)	$\frac{3}{10}$ or 0.3	1	
12	(a)	$3\frac{1}{2}$, or $\frac{7}{2}$, or 3.5, only	1	
	(b)	12-2x or any equivalent	2	or C1 for $12 - 2$ "y" or any equivalent or C1 for $6 - 2x$, or for any incorrect linear combination of 12 and $2x$ (but not 2"y")
13	(a)	Irrational	1	
	(b)	$(AB^2 =) AC^2 - 5^2 \text{ or } (AB =) \sqrt{AC^2 - 5^2}$ or $AC^2 = AB^2 + 5^2$. AC must be "their" $\sqrt{89}$	M1	
		$(\pm) 8$	A1	
14	x = 9	y = 6 both	3	or C2 for one answer correct; or C1 for a pair of values that fits either equation, provided that this pair has been obtained by the method of substitution, equal coeffs., or matrices/determinants and not by trial and error.
15	(a)	16 (.0)(0)	1	
	(b)	75 (.0)(0) www	2	or M1 for $\frac{60}{0.8}$ oe, e.g. $\frac{3k \times 100}{4k}$
16	(a)		1	
	(b)	$\begin{pmatrix} -1 & -2 \\ 0 & -2 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 \\ -\frac{1}{3} & -\frac{2}{3} \end{pmatrix} \text{ oe e.g. } -\frac{1}{3} \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$	2	or B1 for det $\mathbf{A} = -3$ or for $k \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$ or for $-\frac{1}{3} \begin{pmatrix} \dots & \dots \\ \dots & \dots \end{pmatrix}$
17	(a)	(490) (520)	2	or C1 for a 2 × 1 matrix with one element correct; or for (490 520)
	(b)	The cost, (in cents), of each bunch. oe	1	Indep. of (a)
18	(a)	14.7(0) cao	1	
	(b)	30	2	or B1 for 170 seen in working or in Ans. Space

					my
Page 4			Mark Scheme: Teachers' version		Syllabus
_			GCE O LEVEL – O	ctober/November 2010	4024
					Carry
19	(a)	p = 1, q =	= 0	1	Original

				1 1/4
19	(a)	p = 1, q = 0	1	artig
	(b)	(i) $\frac{5}{7}$	1	Adridge com
			1.0	
		(ii) $\frac{2}{7}$ or ft 1 – their (i)	1ft	ft depends on 0 < Ans. < 1
		or ft $(\frac{1}{7} + \frac{1}{7} \times \text{their } p)$		
20	(a)	3x > 7 oe $4x + 4y < 35$ oe	1 1	or C1 for $3x \dots 7$ and $4x + 4y \dots 35$ (oe) with incorrect inequalities for \dots .
	(b)	(5, 3)	1	with mediteet inequalities for
21	(a)	53.35°	1	
	(b)	65.15°	2	or C1 for 64.65; or 65.1; or 64.05
22	(a)	(i) 16 000 cao	1	
		(ii) 0.0030 cao	1	
	(b)	50 cao	2	Give 0 for multiplication using either original number.
				or C1 for figs. 5, or 6; or 45; or 48
23	(a)	123°	1	
	(b)	57°	1	
	(c)	33°	1	
	(d)	66°	1	
24	(a)	$3\mathbf{p} + \mathbf{q}$ oe	1	
	(b)	 (i) Trapezium (ii) p + kq oe 	1 1	
			1	
		(iii) $\frac{1}{3}$		
25	(a)	30	2	or B1 for $10u$ or $\frac{1}{2} \times 20 \times u$ clearly seen
	(b)	90	2	or C1 for 30 (if as the further time from 60) or M1 for
				$100 - \frac{1}{4} \times 40$, or for $60 + \frac{3}{4} \times 40$
26	(a)	$-\frac{4}{5}$, or -0.8, only	1	
	(b)	16	3	or M1 for $\frac{AC}{\sin b} = \frac{10}{\sin a}$ soi
	, ,			$\sin b \sin a$ and M1 for $AC = \frac{10 \times \frac{24}{25}}{\frac{3}{5}}$ oe

Page 5	Mark Scheme: Teachers' version	Syllabus	er
_	GCE O LEVEL – October/November 2010	4024	

27	(a)	3	1	and.
	(b)	80	1	Total State of the
	(c)	$7\frac{1}{2}$ oe	3	or B1 for $\frac{A}{360} \times 2 \times \pi \times r$ with $A = 40$ or 120,
				and $\pi = \pi$ or 3 or 3.14 or $\frac{22}{7}$ etc
				and M1 for adding the appropriate radii ($6r$ or $2r$) to their arc(s) and equating to the
				appropriate wire length (60 or 20)
				$(8r = 60, \text{ oe (e.g. } \frac{8}{3}r = 20), \text{ gets B1 and M1})$