WANT BAR CAME

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

F	Page 2	Mark Scheme: Teachers' version	Syllabus
		GCE O LEVEL – May/June 2011	4024
Abbre	viations		andridge
cao	correct answ	rer only	04:
cso	correct solut	ion only	98
dep	dependent		, in
ft	follow throu	gh after error	· On
isw	ignore subse	quent working	
oe	or equivalen	t	
SC	Special Case		

Abbreviations

follow through after error ignore subsequent working or equivalent Special Case ft isw

oe SC

www without wrong working

Qu	Answers	Mark	Part marks
1	(a) 7	1	
	(b) 0.52 oe	1	
2	(a) Any decimal n such that $0.2 < n < 0.25$	1	
	(b) 80	1	
3	(a) $\frac{7}{24}$ oe Final ans.	1	
	(b) $\frac{7}{18}$ cao	1	
4	(a) $(y) > 7.5$ oe	1	
	(b) -2, -1, 0, 1	1	
5	(a) $\begin{pmatrix} -2\\10 \end{pmatrix}$	1	
	(b) 10	1	
6	$\frac{9\pi}{2} + 27 \text{ oe}$	2	B1 for $\frac{\pi \times 3^2}{2}$ or $\frac{1}{2} \times 9 \times 6$ soi or
			for $\frac{\pi r^2}{2} + \frac{1}{2}bh$ with r , b and h clearly identified.
7	(a) $\frac{4}{9}$ oe	1	
	(b) 840	1	
8	12.5 oe	2	B1 for $y = kx^2$ or
			$(k=)\frac{1}{8}$ soi or
			$2:4^2=y:10^2$ oe

-74
Syllabus
4024

		ı	24
9	y 3 y $-2x$	2	C1 for either inequality correct or both statements $y()$ 3 and $y()$ – $2x$ given () may contain =, < etc
10	18	2	B1 for attempt at $\sqrt[3]{8}$: $\sqrt[3]{27}$ or M1 for 12^3 : $x^3 = 8$: 27 oe
11	50	2	M1 for $\frac{35-21}{AD} = \cos\theta$ oe
12	(a) A B	1	
	(b) (i) 2	1	
	(ii) 2, 3, 4, 5, 7	1	
13	(a) $2(.0) \times 10^{-5}$	1	
	(b) (i) $7.6 \times 10^6, 2.1 \times 10^7, 8.0 \times 10^7, 1.2 \times 10^8$	1	
	(ii) 1.34×10^7	1	
14	(a) $2^2 \times 3^3$	1	
	(b) $(p =) 3, (q =) 2, (r =) 1$	2	C1 for two correct
15	(a) $3q(3p-4q)$	1	
	(b) $(4p-3)(2x+y)$	2	M1 for $4p(2x + y) - 3(2x + y)$ or $2x(4p - 3) + y(4p - 3)$ oe or B1 for the correct extraction of a common factor at any stage
16	(a) (0)57°	1	
	(b) 237°	1 ft	ft their (a) + 180
	(c) 237.5	1	
17	(a) 5.963	1	
	(b) 6999	1	
	(c) 381 cao	1	

		nn
Page 4	Mark Scheme: Teachers' version	Syllabus
	GCE O LEVEL – May/June 2011	4024

		77/
(a) (i) Bisector of SPQ	1	andridge com
(ii) Perpendicular bisector of <i>QR</i>	1	Se. Com
(b) Correct region shaded	1	
(a) 0.05 cao	1	
(b) 14	1	
(c) 1000	2	B1 for two of 200, 2 and 0.8 seen
(a) $20 < n$ 40	1	
(b) 37.5	3	B1 for $\sum fn$
		and independent B1 for dividing by $(5+20+10+5)$
(a) 16	1	
(b) 16	1	
$2y^4$	2	C1 for two of 2 · 4 and vice most on
(c) ${x}$	2	C1 for two of 2, y^4 and x correct or $4y^8 \qquad 4^{\frac{1}{2}} xy^{\frac{9}{2}}$
		B1 for $\frac{4y^8}{x^2}$ seen or $\frac{4^{\frac{1}{2}}xy^{\frac{9}{2}}}{x^2y^{\frac{1}{2}}}$ or better
(a) 140	1	
(b) 70	1.6	ft their (a)
(b) 70	111	ft $\frac{1}{2}$ their (a)
(c) Congruency established	3	B2 for $AB = CD$ stated, EAB = EDC soi
		or $DCE = ABE$ and $DEC = BEA$ or
		B1 for any correct pair of equal angles.
(a) (i) 560	1	
(ii) 76.8(0)	2	B1 for 19.2 or 3.2 oe soi
(b) 150	2	B1 for figs $\frac{270}{1.8}$ seen
	(ii) Perpendicular bisector of <i>QR</i> (b) Correct region shaded (a) 0.05 cao (b) 14 (c) 1000 (a) 20 < n	(ii) Perpendicular bisector of QR 1 (b) Correct region shaded 1 (a) 0.05 cao 1 (b) 14 1 (c) 1000 2 (a) 20 < n 40 1 (b) 37.5 3 (a) 16 1 (c) $\frac{2y^4}{x}$ 2 (a) 140 1 (b) 70 1ft (c) Congruency established 3 (a) (i) 560 1 (ii) 76.8(0) 2

		mm
Page 5	Mark Scheme: Teachers' version	Syllabus
	GCE O LEVEL – May/June 2011	4024

		•	74
24	(a) (0.5, 4) oe	1	B1 for substitution of (-2.1) in $2y + 3x + k = 0$
	(b) 1.2 oe	1	3. Ca.
	(c) (i) 4	2	SC1 for answer – 23 or
	(ii) -1.5 oe	1	any correct ft after substitution of $(\pm 2, \pm 1)$
25	(a) $\frac{1}{13}$ oe	2	M1 for $10 - 6x + 3 = 3x + 1$ or better
	(b) $(x =) 5$, $(y =) -3$ oe	3	C2 for one correct with supporting working or both answers without working or M1 for correct method to eliminate one variable reaching such as $26x = k$, $hx = 130$, $13y = p$, $qy = -39$ or multiples of these.
26	(a) Correct reduction to $2x^2 + x - 15 = 0$	2	M1 for $(2x + 3)(x - 1) = 12$
	(b) 2.5 −3	2	C1 for one correct with supporting working or both with signs reversed or both correct and no working or B1 for $(2x-5)(x+3)$ or $\frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times (-15)}}{2 \times 2}$ seen
	(c) 19	1ft	ft 6(their positive x) + 4