Angles - 2020 O Level Math D

1. Nov/2020/Paper_11/No.11

In the diagram, ABC and DEF are parallel lines.

 $A\hat{B}E = 123^{\circ}$ and $C\hat{E}F = 40^{\circ}$.

(a) Calculate $D\hat{E}B$.

(b) Calculate $B\hat{E}C$.

$$B\hat{E}C = \dots$$
 [1]

Nov/2020/Paper_11/No.13

In the diagram, OC and OA each make an angle of 70° with the North line. $A\hat{O}B = x^{\circ}$ and $B\hat{O}C = y^{\circ}$.

(a)
$$x: y = 3:7$$
.

Find the value of x.

$$x = \dots$$
 [2]

(b) Find the bearing of C from O.

(c) Find the bearing of O from A.

Nov/2020/Paper_11/No.17

In the diagram, AC is a diameter of the circle centre O. The tangents from *T* touch the circle at *B* and *C*. $B\hat{C}T = 62^{\circ}$.

(a) Find x.

 $x = \dots [1]$

(b) Find *y*.

$$y =$$
 [2]

Nov/2020/Paper_12/No.22

NOT TO **SCALE**

In the diagram, A, B, C, D and E lie on the circle, centre O. $A\hat{O}B = 48^{\circ}, D\hat{E}B = 54^{\circ}.$

(a) Find x.

(b) Find *y*.

$$y =$$
 [1]

(c) Find z.

$$z = \dots$$
 [1]

Nov/2020/Paper_21/No.7

(a)

NOT TO **SCALE**

A, B, C and D are points on the circle, centre O. $B\hat{A}D = 68^{\circ}$ and $C\hat{B}O = 52^{\circ}$.

Find \hat{CDO} .

 $\hat{CDO} = \dots$ [3]

(b)

The cross-section of solid A is the sector of a circle of radius 6 cm and angle 40° . The height of solid A is 5 cm.

(i) Calculate the total surface area of solid A.

(ii) Solid B is mathematically similar to solid A. volume of solid A: volume of solid B = 27:1. The ratio

Calculate the surface area of solid B.

..... cm² [2]

Nov/2020/Paper_22/No.7a

Palpa r The diagram shows part of an *n*-sided regular polygon *ABCDEFGH*... $D\hat{C}F = E\hat{F}C = 24^{\circ}$.

(i) Find the value of n.

n =	2	l
//	_	ı

(ii) Find
$$H\hat{F}G$$
.

$$H\hat{F}G = \dots$$
 [2]

7. June/2020/Paper_11/No.5

Ralpa Callillo The diagram shows an isosceles triangle ABC and an equilateral triangle BDE. D is the intersection of AB and CE. Angle $BAC = 28^{\circ}$.

Calculate x.

8. June/2020/Paper_21/No.7

The diagram shows a quadrilateral and part of a regular octagon. *AB* is a straight line.

Form an equation in x and solve it to find x.

$$x = \dots$$
 [3]

P, Q, R, S and T are points on the circumference of a circle, centre O. $P\hat{S}Q = 32^{\circ}$ and O lies on TQ. PS is parallel to QR and QR = RS.

(i) Find $P\hat{Q}T$. Give a reason for each step of your working.

$$P\hat{Q}T = \dots [3]$$

(ii) Find $Q\hat{R}S$.

$$Q\hat{R}S = \dots$$
 [2]

(iii) Find $T\hat{Q}S$.

$$T\hat{Q}S = \dots$$
 [1]

9. June/2020/Paper_22/No.9

(a)

NOT TO **SCALE**

EMF and *GLNH* are parallel lines. LM = LN and $G\hat{L}M = 126^{\circ}$.

Find FMN.

Give a reason for each step of your working.

(b)

NOT TO SCALE

A, B, C and D are points on the circumference of a circle, centre O. BD and AC intersect at E and BC is a diameter of the circle. $A\hat{C}D = x^{\circ}$ and $D\hat{O}C = y^{\circ}$.

Find an expression, in terms of x and/or y, for

(i) $D\hat{B}C$,

(ii) $A\hat{B}D$,

$$D\hat{B}C = \dots [1]$$

$$A\hat{B}D = \dots [1]$$

(iii) $A\hat{ED}$,

 $A\hat{E}D = \dots$ [2]

(iv) $B\hat{D}A$.

Papacamoridos Pa $B\hat{D}A = \dots$ [1]