<u>Graphs of functions – 2020 O Level Math D</u>

1. Nov/2020/Paper_21/No.4

(a) Complete the table for $y = \frac{4}{5} \times 2^x$.

х	-3	-2	-1	0	1	2	3
y		0.2	0.4	0.8	1.6	3.2	6.4

(b) On the grid, draw the graph of $y = \frac{4}{5} \times 2^x$ for $-3 \le x \le 3$.

[1]

(c) By drawing a tangent, estimate the gradient of $y = \frac{4}{5} \times 2^x$ when x = 2.

(d) Use your graph to estimate the solution of the equation $4 \times 2^x = 5$.

2. Nov/2020/Paper_22/No.3

(a) Complete the table for $y = \frac{x}{4} + \frac{2}{x}$.

The values of y are given correct to 2 decimal places where appropriate.

х	0.5	1	1.5	2	3	4	5	6	7
y	4.13	2.25	1.71	1.5	1.42	1.5	1.65	1.83	

[1]

(b) On the grid, draw the graph of $y = \frac{x}{4} + \frac{2}{x}$ for $0.5 \le x \le 7$.

[3]

(c)	By drawing a tangent, estimate the gradient of	$y = \frac{x}{4} + \frac{2}{x}$	when $x = 1$
-----	--	---------------------------------	--------------

																											I	1	2	,	
																												ш		_	

(d) (i) On the grid, draw the graph of 2y + x = 6.

[2]

(ii) Write down the x-coordinates of the points of intersection of the graphs of 2y + x = 6 and $y = \frac{x}{4} + \frac{2}{x}$.

$$x = \dots$$
 and $x = \dots$ [2]

(iii) These x-coordinates are the solutions of the equation $3x^2 + Ax + B = 0$.

Use 2y + x = 6 and $y = \frac{x}{4} + \frac{2}{x}$ to find the value of A and the value of B.

$$A = \dots$$

$$B = \dots$$
 [3]

3. June/2020/Paper_21/No.6

(a) The table shows some values for $y = \frac{x^3}{4} - x + 1$.

x	-3	-2	-1	0	1	2	3
y	-2.75	1	1.75	1	0.25	1	

(i) Complete the table.

(ii) Draw the graph of $y = \frac{x^3}{4} - x + 1$ for $-3 \le x \le 3$.

[3]

[1]

(a) On the same grid, draw the graph of $y = \frac{1}{3}x + 1$.

(b) Use your graph to find all the values of x where $y = \frac{1}{3}x + 1$ crosses $y = \frac{x^3}{4} - x + 1$.

(c) The values of x where $y = \frac{1}{3}x + 1$ crosses $y = \frac{x^3}{4} - x + 1$ are the solutions of the equation $Ax^3 = Bx$.

Given that A and B are integers, find A and B.

(b) Here are four equations.

$$y = x^2 - 2x$$
 $y = 2x^2 - 2$ $y = x^2 + 2x$ $y = 2x^2$

The graphs of three of these equations are sketched below.

Write the correct equation below each graph.

[2]

4. June/2020/Paper_22/No.7

(a) The table shows some values for $y = 4^x$.

x	0	0.5	1	1.5	2	2.5	3
у			4	8	16	32	64

(i) Complete the table.

[1]

(ii) Draw the graph of $y = 4^x$ for $0 \le x \le 3$.

[3]

(;;;)	By drawing a tan	cont. actimate the	a aradiant of the	ourse when $v = 2$
ш	Dy diawing a tan	gem, esimmate in	e gradieni or ine	curve when $x - 2$.

1
 [2]

- (iv) The solutions of the equation $3(4^x) + ax + b = 0$ can be found from the points of intersection of $y = 4^x$ and y = 20x 12.
 - (a) Find the value of a and the value of b.

$$a = \dots b = \dots [2]$$

(b) By drawing the line y = 20x - 12 on the grid opposite, find all the solutions of $3(4^x) + ax + b = 0$.

(b) Here is a sketch of the graph of a quadratic function.

NOT TO **SCALE**

The curve has a maximum point (p, q).

Find the value of p and the value of q.

