Vectors in two dimensions – 2020 O Level Math D

- 1. Nov/2020/Paper_21/No.9
 - (a) H is the point (5, 2) and J is the point (-3, 6).
 - (i) Find \overrightarrow{HJ} .

HJ = [1]

Calculate the magnitude of \overrightarrow{HJ} .

(iii) M is the midpoint of HJ.

Find the position vector of A

(b)

The diagram shows a shape made from seven identical equilateral triangles. $\overrightarrow{OA} = \mathbf{p}$ and $\overrightarrow{OF} = \mathbf{q}$.

- (i) Express, as simply as possible, in terms of **p** and/or **q**
 - (a) \overrightarrow{FB} ,

(b) \overrightarrow{FE} .

$$\overrightarrow{FE} = \dots$$
 [1]

(ii) X is a point on FB and FX: XB = 3:1.

Express \overrightarrow{OX} , as simply as possible, in terms of **p** and/or **q**.

$$\overrightarrow{OX} = \dots$$
 [2]

(iii) Y is a point on BD. Quadrilateral OXYF is a trapezium.

Express \overrightarrow{XY} , as simply as possible, in terms of **p** and/or **q**.

$$\overrightarrow{XY} = \dots$$
 [3]

- Nov/2020/Paper_22/No.8
 - (a) H is the point (-7, 4) and $\overrightarrow{HJ} = \begin{pmatrix} 10 \\ -6 \end{pmatrix}$.
 - (i) Calculate the magnitude of \overrightarrow{HJ} .

(ii) Given that $\overrightarrow{HK} = 3\overrightarrow{HJ}$, find the coordinates of point K.

(b)

NOT TO **SCALE**

The diagram shows a parallelogram OBCE.

$$\overrightarrow{OA} = \mathbf{p}$$
 and $\overrightarrow{OE} = \mathbf{q}$.

AD is parallel to OE and OA : AB = 1 : 3. X is a point on BC such that BX : XC = 3 : 2.

 $\overrightarrow{OC} = \dots$ Express, as simply as possible, in terms of **p** and/or **q**

(i) \overrightarrow{OC} ,

(ii) \overrightarrow{AX} ,

 $\overrightarrow{AX} = \dots$ [2]

 $\overrightarrow{EX} = \dots$ [2]

3. June/2020/Paper_11/No.25

O, P and Q are points as shown in the diagram.

NOT TO

$$\overrightarrow{OP} = \mathbf{a} - 2\mathbf{b}$$
 and $\overrightarrow{OQ} = 4\mathbf{a} + 4\mathbf{b}$.

Express \overrightarrow{PQ} , as simply as possible, in terms of **a** and **b**.

 $\overrightarrow{PQ} = \dots$ [2]

4. June/2020/Paper_12/No.19

Vectors \mathbf{p} and \mathbf{q} are shown on the grid.

On the grid, draw the vector

(a) 3p,

[1]

(b)
$$q-p$$
.

[1]