1. June/2022/Paper\_11/No.16

$$\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

(a) On the unit grid below, draw and label vector **p**.



(b) On the unit grid below, draw and label vector 2q.



[1]

[1]

(c) On the unit grid below, draw and label vector  $\mathbf{p} - \mathbf{q}$ .



[2]

**2.** June/2022/Paper\_11/No.25



In triangle ACD, B is the midpoint of AC and E is the midpoint of AD.  $\overrightarrow{AB} = 6\mathbf{a} + 3\mathbf{b}$  and  $\overrightarrow{DC} = 5\mathbf{a} + 2\mathbf{b}$ .



(i)  $\overrightarrow{AC}$ 

$$\overrightarrow{AC} = \dots$$
 [1]

(ii)  $\overrightarrow{AD}$ 

$$\overrightarrow{AD} = \dots$$
 [2]

(b) Show that  $\overrightarrow{EB}$  is parallel to  $\overrightarrow{DC}$ .

|      | <br> |
|------|------|
| <br> | <br> |
|      |      |

3. June/2022/Paper\_12/No.25



NOT TO SCALE

OABC and OPQR are parallelograms.

A is a point on OP and C is a point on OR.

$$\overrightarrow{OA} = \mathbf{a}$$
 and  $\overrightarrow{OC} = \mathbf{c}$ .

$$OA: OP = 1: 4 \text{ and } OC: CR = 2: 3.$$

(a) Find  $\overrightarrow{OR}$  in terms of c.



**(b)** Find  $\overrightarrow{CQ}$ , as simply as possible, in terms of **a** and **c**.



(c) Find the ratio area OABC: area OPQR.

