MARK SCHEME for the June 2004 question papers

5054 PHYSICS

5054/01

5054/02
5054/03

5054/04
Paper 1 (Multiple Choice), maximum mark 40
Paper 2 (Theory), maximum mark 75
Paper 3 (Practical Test), maximum mark 30
Paper 4 (Alternative to Practical), maximum mark 30

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 5054/01

PHYSICS
Paper 1 (Multiple Choice)

GCE O Level

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 5054/02
PHYSICS
Paper 2 (Theory)

Page 1	Mark Scheme	Syllabu
	PHYSICS - JUNE 2004	5054

Section A

1 (a) (i) weight / gravity / gravitational (force)
(ii) air / wind resistance or drag or friction / upthrust
(b) (i) 9.8 or $10 \mathrm{~m} / \mathrm{s}^{2}$ or N / kg
(ii) air resistance increases (not if parachute open)
less resultant force or sensible statement about upwards force C1
e.g. resistance opposes gravity or decreases acc. C1
slope of line decreases C1
(iii) air resistance = weight $/$ no resultant $/$ net $/$ overall force $/$ downwards
force balances upwards force \quad B1

Total [6]
2 (a) (i) radiation B1
(ii) no molecules or medium (to vibrate, conduct, convect) / vacuum B1
(b) hot air rises B1
(hot) air expands / density decreases B1
(c) fiberglass or air is a bad conductor/ insulator / lags / reduces heat flow fiberglass traps air or prevents convection
(ignore radiation statements)

3 (a) rise in temperature / hot / heated B1
road / bridge / rail / metal expands or gap reduces B1
no buckling / deformation / breaking / cracking / twisting / tilting B1
(b) any other problem + solution
e.g. concrete cracks - leave a gap, telephone wires sag - put them high / tight
hot water cracks glass - use thin glass / car engines seize up - cool them
water freezes in pipes - lag them or use antifreeze / tyres burst - let air out
pipes bend - use flexible joints / dashboard deforms - car in shade
wrong readings on measuring cylinder - use correct temp.
Total [4]
4 (a) distance traveled per unit time or in one second / distance \div time or rate of change of distance
(b) $\quad s=d / t$ in any algebraic or numerical form C1
any doubling of distance or final time C1
$0.48 \mathrm{~s} \quad$ (allow $0.24 \mathrm{~s} 2 / 3$ accept 0.5 s)
(c) $\quad 60 / 0.48$ (5)

A1
(ecf (b)) A1
Total [6]
5 (a) (i) magnetic (field) of current/ coil / recording head or head is magnetized / an electromagnet

(ii) magnetism / magnetic field or current or poles on head reverses /
changes direction (accept "due to alternating current") B1
(iii) each direction / one cycle longer (on tape) B1
(b) (i) need to keep record / tape stored or played B1
(ii) iron, steel etc B1

Page 2	Mark Scheme	Syllabu
	PHYSICS - JUNE 2004	5054

6 (a) (i) voltage past maximum or $3 \mathrm{~V} /$ off scale / outside range (ii) reading less accurate or sensitive / not far up scale or smaller deflection
(b) (i) $\quad \mathrm{V}=\mathrm{I} \mathrm{R}$ in any algebraic format

4/12
0.33 A (accept $1 / 3 \mathrm{~A})$
(ii) (i) * 30 or (i) * $18+4$ or $30 * 4 / 12$
$9.9-10 \mathrm{~V} \quad$ (e.c.f (\mathbf{i}), e.g. if $(\mathbf{i})=0.3,0.3^{*} 30=9 \mathrm{~V}$ or $0.3^{*} 18+4=9.4 \mathrm{~V}$)
only 1 unit error in this question
Total [7]
7 (a) (i) filament is hot / heated (by current from 6 V supply) / thermionic emission
(ii) anode is positive / anode attracts electrons / electrons attracted to + (electric) field from anode to cathode
(iii) otherwise electrons stopped / deflected / slowed down /
collide (with air atoms)
(accept no opposition to movement, to reach screen, to avoid air resistance)
(b) up and down vertical or side to side movement (not on both axes) or plates are charged (e.g. plates are +ve and -ve)or plates are charged (e.g. plates are +ve and -ve)

8 (a) radon (gas)
(b) cancer / mutation / cell damage or death
radiation sickness or adds to readings B1
(accept count with no source)
$\begin{array}{ll}\text { (c) } & \text { (outer) space / stars / Sun } \\ \text { (d) } & \text { number of protons and neutrons (not no. nucleons) }\end{array}$
(e) $84 \quad 216$ (values reversed B1)

Page 3	Mark Scheme	Syllabu
	PHYSICS - JUNE 2004	5054

SECTION B

9 (a) (i) Any three other parts of spectrum radio, microwaves, u.v., X, γ (-1 any wrong if 3 ignore t.v.)
(ii) \quad correct order for all including visible (accept colours) and infra-red or radiation (from shiny material) more energy hits food or reflection towards food cooks food faster avoids wasting heat / energy or more efficient avoids heating outer case or burning hand

ANY $2 \quad$ B2
(b) connected to (outer metal) case \quad B1
if live touches case or case becomes live B1
allows current / charge to earth / ground B1
blows fuse (and disconnects circuit)
or no current through person or no electrocution / electric shock B1
(c) (i) $\mathrm{P}=\mathrm{V}$ I in any algebraic form $\quad \mathrm{B} 1$
(ii) 230 * $8.3 \quad \mathrm{C} 1$

1900 W (accept 1910 W but not power 1/4) A1
(iii) current decreases (halves) or power 1/4 B1

Total [15]
10 (a) mass of bar (measured) M
using (top-pan) balance / spring balance / scales etc. A1
length, breadth and height measured
or volume water + bar measured or displacement can (full) with water M1
volume $=$ length x breadth x height
or subtract volume water alone or collect water displaced A1
using ruler / calipers / micrometer or measuring cylinder A1
density $=$ mass $/$ volume \quad B1
(b) (i) melts / changes state / becomes liquid \quad B1
(ii) (initial) increase in vibration / K.E. of molecules (to 600s) B1
then later / after 600s or on melting
bonds broken (accept molecules break free / overcome attraction / not fixed in place) B1
(iii) $\mathrm{E}=\mathrm{mc}(\Delta) \mathrm{T}$ algebraic form seen C 1
$645-655\left({ }^{\circ} \mathrm{C}\right)$ seen C1
17160 J (allow 1700, 17200, 20000) A1
(iv) $30 * 400$ or $12000(\mathrm{~J})$ seen) C 1
$\mathrm{E}=\mathrm{mL}$ any algebraic form seen or 12 000/0.3 C1
$40000 \mathrm{~J} / \mathrm{kg}$ A1

Page 4 Mark Scheme

11 (a) (i) P.E. decreases (A to B or C to D or downhill or initially)
K.E. gained (P.E. \rightarrow K.E....2)
K.E. to P.E. change must be clear and from B to C or uphill
(ii) mgh algebraic form seen 500*10*30
150000 J
(iii) conservation of energy cited or clear that loss of P.E. has become K.E.
(b) (i) velocity involves direction or is a vector (speed does not)
(ii) force towards centre (of curve) / inwards
(accept on diagram)
(accept centripetal)
(c) $\quad \mathrm{F}=\mathrm{ma}$ in any algebraic form or $3000=500 \mathrm{a} \quad \mathrm{C} 1$

3000/500
C1
$6(.0) \mathrm{m} / \mathrm{s}^{2}$

GCE O Level

MARK SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 5054/03

PHYSICS

Paper 3 (Practical Test)

1. (a), (b) \& (c) Repeat measurements taken for either t_{1} or t_{2}.

Correct T_{1} in the range 1.40 s to 1.60 s to 0.01 s
Correct T_{2} within $\pm 0.1 \mathrm{~s}$ of T_{1}
(d) Comment on

Either reaction time - however expressed
Or range of values
(e) Sensible conclusion based on their results e.g. Time for one oscillation is independent of the mass. (if periods are the same within the limits of uncertainty)
Or Time for one oscillation increases / decreases with increase in mass. (Allow direct or inverse proportion) (provided their results show this)
2. (a) Power supply, ammeter and switch in series with gap between A and B, voltmeter in parallel with power supply. B1
(b), (c) \& (d) I values in region of 0.3 A and 0.45 A with unit seen at least once and at least one current to 0.01 A .
(Allow Centre variation)
Both V values in the region of 4.5 V with unit seen at least once and at least one voltage to 0.1 V .
(Allow Centre variation)
R values in the region of 15Ω and 10Ω with unit seen at least once.
(e) Resistance increases as diameter decreases. \quad B1
3. (a) and (b) Sensible temperatures with unit seen at least once.

At least one reading attempted to better than $1^{\circ} \mathrm{C}$
V_{F} numerically to (1.0 to 3.0) x temperature drop and correct calculation of V_{I} with unit seen at least once. m_{I} numerically equal to V_{I}.
(c) and (d) Sensible values for all the thermal energy changes with unit seen at least once.
(e) Energy gained greater than energy lost as cold water gains thermal energy from beaker / surroundings

4. Initial readings.

(b) $\quad x 0.60 \pm 0.05 \mathrm{~m}$ with unit. B1
(c)
$y 0.20 \pm 0.05 \mathrm{~m}$ with unit.
(Penalise missing unit once only)
x and y recorded to 0.001 m or better.B1

Table

(d)

Table with units for d, D and $1 / D$.
At least one reading with D greater than or equal to 1.00 m . B1
At least one reading with D less than or equal to 0.70 m
Correct calculation of $(d / D)^{2}$ and $1 / D$ to at least 2 s.f.
Five good values judged according to the table below. B1

D	Range of $(d / D)^{2}$	$1 / D$
0.65	$0.06-0.10$	1.54
0.70	$0.12-0.16$	1.43
0.75	$0.18-0.22$	1.33
0.80	$0.23-0.27$	1.25
0.85	$0.27-0.31$	1.18
0.90	$0.31-0.35$	1.11
0.95	$0.35-0.39$	1.05
1.00	$0.38-0.42$	1.00

Page 3	Mark Scheme	Syllabu

Page 3
Mark Scheme

Graph.

(e)

Axes labelled with unit and correct orientation.
Suitable scale y axis $1 \mathrm{~cm}=0.02 / 0.025$
x axis $1 \mathrm{~cm}=0.1$ or $0.05 \mathrm{~m}^{-1}$
B1

M1
Two points plotted correctly - check the two points furthest from the line.

Best fit fine line and finely plotted points. B1

Calculations.

(f) and (g) Large triangle. B1

Correct calculation of S and f (ignore sign) B1
Value of f in range 0.130 m to 0.170 m with unit. B1
Total [15]

GCE O Level

MARK SCHEME
MAXIMUM MARK: 30
SYLLABUS/COMPONENT: 5054/04
PHYSICS
(Alternative to Practical)

Page 1	Mark Scheme	Syllabu

Question 1

(a) Uses two rays from X and Y (clear intention to touch hole edges)

One X and one Y ray "touch" an edge of the hole and meet screen
Any one X and one Y are neat lines (rule and sharp "pencil") allow apparent "refraction" or "diffraction" at hole
One correct X and the corresponding Y labeled on screen
Arrows on rays; no broken lines penalty -1 (max).
(b) XY in range 54 to 56 mm (unit required), accept in cm

Total [5]

Question 2

(a) 4 items correct, $3 \mathrm{mks} ; 3$ items $=2 \mathrm{mks} ; 2$ items $=1 \mathrm{mk}$. Accept historical symbols Accept any other component provided that the function of the circuit is not compromised.
Penalise -1 (max) :- short circuit (e.g. line behind component, unless signs of use of rubber) or any compromised circuit function.
(b) Correct polarities, +ve signs for correct terminals of cell and ammeter (re diode).
(c) No current / I = 0, (do not accept "nothing"), accept very small "reverse" current / lamp does not light.
(d) One from: limit current / prevent overheating / current indicator / provides resistance

Question 3

(a) Any method based on rule reading at $25^{\circ} \mathrm{C}$ - rule reading at top of thermometer bulb.
NB 1 required. Mark text or diagram or Fig 3.1
Rule as close as possible to thermometer (on diagram $<1 \mathrm{~cm}$)/ uses fiducial aidB1

With the eye/line of sight perpendicular to the rule/end of mercury thread B1
(b) (i) $I_{0}=5.6-5.8(\mathrm{~cm}), I_{100}=22.6-22.8(\mathrm{~cm})$ ignore unit B1
(ii) $\Delta l / 100$, clear, correct arithmetic ecf, 2 or 3 dcp , ignore unit, accept any correct $\Delta l / \Delta \theta$ from graph.
B1
(iii) linearly, or $\left(I-I_{0}\right) \propto \theta$ accept/line has a constant/uniform m, note that... "directly proportional" automatically looses the mark.

Question 4

(a) (i) V initial $=$ a volume between $40 \mathrm{~cm}^{3}$ and $60 \mathrm{~cm}^{3}$: (allow use of beaker) must be able to displace $40 \mathrm{~cm}^{3}$ / prevents overflowing / exceeding cm^{3} limit
(ii) $\left\{V_{\max }-V_{\text {initial }}\right\} /$ change in volume is found / change in volume obtained is $=V_{\text {metal }} /$ any related answer that has an association of measurement of volume.
(iii) Any good point e.g. tap cylinder to release air / how avoiding parallax / water at $20^{\circ} \mathrm{C} /$ careful pouring / avoid splashing / use set square / repeat average / reading the position of the bottom of the meniscus.
(b) Scale calibration of cylinder is correct at $20^{\circ} \mathrm{C} /$ liquid needs to be at $20^{\circ} \mathrm{C}$
(c) Water (on the metal would be) included in the (repeat) volume of the metal; or something that means the same, not just erroneous.

Question 5

(a) Axes correct, scale that cannot be $x 2$ / is not "awkward" and with units

Line judgement re plots (line does not go through all correctly plotted points, so accept smooth line through 5 points i.e., one point not on the line)
Neat smooth thin line
(b) Mark cands diagram or Fig 5.1:
(i) Object displace downwards OR screen displaced downwards B1

Any ray from the top of object through the lens to meet screen. Be generous re art and accuracy of position, B1
(ii) put centres in line B1

