MARK SCHEME for the November 2005 question paper

5054 PHYSICS

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses

Section A

1
(c)

2

3

4
(a)
(b)
(c)
(a) (i) diagram with larger amplitude and shorter "wavelength"
(ii) louder means larger amplitude/height B1
higher pitch means higher frequency/more waves on screen/shorter wavelength

B1
(b)
amount of matter/substance or ability to resist motion (accept Force/acc)
(b) (i) downwards force labelled weight/gravity continuation of vertical line
upwards force (labelled tension) along vertical line
(allow 1 mark if both labels correct but lines of action not accurate, e.g. displaced to side)
(ii) 4 N

4 N or same as other B1
upwards force/tension increases B1 spring stretched/longer B1
molecules hit piston/end/walls
same number molecules hit equal (unit) areas of piston and end or more molecules hit piston but area is larger
(b) (i) Fxd formula B1
2.3 J c.a.o.

B1
(ii) $\quad \begin{aligned} & \mathrm{PV}=\text { constant or } \mathrm{P}_{1} \mathrm{~V}_{1} \\ & 1.0 \times 10^{5} .100=\mathrm{P} .80 \\ & 1.25 \times 10^{5} \mathrm{~Pa}\end{aligned}$

B1
C1 A1
(b) (i) decreases B1
(ii) decreases B1
(iii) constant

B1
X a -rays, ultra-violet, infra-red, microwaves in each box B2 allow one mark if moving one box gives correct order
sun-beds (accept tanning), fluorescent tubes, sterilisation, illuminating marks on property (phosphors) not just marking property B1
transverse, same speed, will diffract, reflect, refract etc. (allow only 1) travel in a vacuum (accept need no medium) any 2

B2
5
B1
electrical at start
B1 B1
chemical at end and a clear transformation without errors
(allow 1 mark for chemical to electrical)

Section B

9 (a) (i) protects the circuit or stops a fire
(if) current is too large not a surge of current/power fuse melts
stops current/breaks circuit
any 3 lines B3
(ii) heating element fault allows water to conduct (electricity)
(with earth connected, if a fault) current flows to earth
no current (through water) to person
no (electric) shock any 2 lines B2

(c)
fast/energetic molecules escape
remaining molecules slower/less K.E
molecules separate
(molecular) bonds are broken
escaping molecules have greater P.E.
(a) (i) $\begin{aligned} & 360 \times 216 \\ & 77800(\mathrm{no}\end{aligned}$
(ii) 77800×0.00012

C1 A1
9.33 Jecf (i)
(iii) $E=m c \Delta T$ in any form, algebraic or numerical B1 9.33/(50 x 4.2) $0.044{ }^{\circ} \mathrm{C}$ ecf (ii) C1
(b) (i) $\mathrm{E}=\mathrm{Pt}$ in any form, algebraic or numerical 72 J
(ii) 0.13 (accept 13%) no s.f. penalty(c) (i) (pure) melting ice for $0^{\circ} \mathrm{C}$B1
(pure) boiling water/steam above boiling water (at 1 atmosphere) for $100^{\circ} \mathrm{C}$ B1
(ii) each division on thermometer is too small described in some way e.g. does not expand far up tube (not bore too thin, not enough mercury) B1
(iii) change use more mercury or use smaller bore M1
reason more expansion or further distance up tube (for same expansion) A1
correct symbol for supply, lamp B1
voltmeter across lamp or resistor B1 ammeter in series with lamp or resistor B1
power supply and variable resistor or variable power supply stated and no errors B1
voltmeter range (0 to) any value between 12 and 20 V B1
(ii) resistance increases (at higher p.d./higher temperature) B1
(b) (i) 1 3(.0) V B1
212 V B1
$3 \quad 15 \mathrm{~V}$ or $\mathbf{1 + 2}$ B1
$4 \quad \mathrm{R}=3 / 0.8$ or V/I seen anywhere in (b) formula or numerical values clear C1
3.75Ω (accept 3.7 or 3.8 but not 4) A1
(ii) 1 0.8 A B1
2 2(.0) A B1
$3 \quad 2.8 \mathrm{~A}$ or $\mathbf{1 + 2}$ B1
$4 \quad 15 \Omega$ or ecf $12 /(\mathrm{ii} 1)$ B1

