MARK SCHEME for the May/June 2006 question paper

5054 PHYSICS

5054/02

Paper 2
maximum raw mark 75

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Section A

1 (a) (i) mass or weight time (to run up steps) or speed height or number of steps and height of each
(ii) mass - ensure balance reads zero without person
time - have two timers (or repeat) or use stopclock to better than 0.1 s height - use callipers for step height or ensure rule vertical or tape taut ANY 1 sensible comment
(b) work $=$ force x distance or power $=$ work/time or K.E. $=1 / 2 \mathrm{mv}^{2}$ mass $\times g \times$ height/time or weight x height /time
(accept distance for height for both marks only if clear in (a)(ii)
2 any position before 50 m
$\begin{array}{ll}\text { (b) points plotted correctly at } 4,8 \text { and } 12 \mathrm{~s}(\pm 1 / 2 \text { square }) & \mathrm{B} 1 \\ \text { from origin to } 4 \text { sec curve drawn } & \text { B1 }\end{array}$
from origin to 4 sec curve drawn
B1
from 4 to 12 sec straight line positive gradient B1
from 12 to 16 sec gradient decreases (but not -ve) B1
$\begin{array}{ll}\text { (c) speed/time } & \text { C1 } \\ 3 \mathrm{~m} / \mathrm{s} & \mathrm{A} 1\end{array}$
3 (a) any mention of magnetic field C1
coil cuts lines of (magnetic) flux/field lines A1
(b) pass current / connect coil to output / prevent wires tangling B1
(c) (induced) voltage or current opposes the change (producing it) B1
(d) large(r) coil, strong(er) magnet, iron inside coil, more turns (on coil) B1
[6]
4 (a) $46\left({ }^{\circ}\right)$ B1
(b) angle of incidence B1
when refracted ray is along surface
or minimum angle of incidence for Total Internal Reflection B1
(c) $\sin i / \sin r$ or $1 / \sin C$ B1
$\sin 63 / \sin 40$ or $1 / \sin 46$ C1
1.39 (accept $1.3860-1.3902$) A1
(d) correct reflected ray by eye B1
5 (a) (electrons) move onto negative/right sphere and off positive/left sphere B1
(b) 3 or more (approx. correct none wrong) lines from one sphere to the other C1
arrow on at least 3 lines from + to - sphere A1
(c) Q = It in any format algebraic or numerical C1$9 \times 10^{-11} \mathrm{~A}$A1

Page 2	Mark Scheme	Syllac

6 (a) (i) high voltage/where voltage (not current) arrives/dangerous (wire)
(ii) zero voltage/safe wire
(iii) zero voltage / connected to ground
(b) (i) (wire) heats up/current increases/electrons move faster
(ii) (wire) melts/causes fire (not blows/melts fuse) A1
(c) avoids electrocution/current through person/water is a conductor

B1
[6]
7 (a) Y input and ground connected across resistor
B1
(b) 3 squares or $3 \times 2 \quad \mathrm{C} 1$

6 V A1
(c) line drawn at 1.5 squares B1

8 (a) emission of at least one of alpha, beta, gamma (particles) M1
from the nucleus or at random A1
(b) (i) background stated or explained B1
$\begin{array}{ll}\text { (ii) } \begin{array}{l}\text { not radioactive } \\ \text { average the same or } 93 \text { total on both sides } \\ \text { or two increase and one decreases or variation explained }\end{array} & \text { B1 } \\ \text { B1 }\end{array}$

Section B

9 (a) change 1 increases evaporation B1
water molecules have more K.E./move faster/more have enough energy B1
change 2 decreases evaporation B1
less surface for molecules to escape (through) B1
change 3 increases evaporation B1
liquid molecules leaving surface removed by collisions with air molecules B1 change 4 decreases evaporation B1 heat/light/infra-red reflected by white surface or tank cooler B1
(b) (i) $0.015 \mathrm{~m}^{3} \quad \mathrm{~B} 1$
(ii) $\mathrm{M}=\mathrm{D} . \mathrm{V}$ in any form $\quad \mathrm{C} 1$
$15 \mathrm{~kg}(\operatorname{ecf}(\mathrm{i})) \quad \mathrm{A} 1$
(iii) $\mathrm{m} . \mathrm{L} \mathrm{L}^{7}$ C1
$3.3 \times 10^{7} \mathrm{~J}$ (ecf (ii)) A1
(iv) energy/time in any form C1 $825 \mathrm{~J} / \mathrm{s}$ or W (ecf (iii)) A1

Page 3	Mark Scheme	Syllau

10 (a) (i) Force/area
(force of) 1 N acting on (area of) $1 \mathrm{~m}^{2}$
(ii) $600(\mathrm{~N})$ seen
force/area in any form e.g. 600/2.4 $\times 10^{-3}$
C1
$2.5 \times 10^{5} \mathrm{~Pa}$
A1
$\begin{array}{ll}\text { (iii) increases } & \text { B1 } \\ \text { less surface area (in contact with ground) } & \text { B1 }\end{array}$
(b) (i) $\mathrm{PV}=$ constant in any form C 1
$1.9 \times 10^{5} .0 .016=2.1 \times 10^{5} . V$ C1
$0.014(476) \mathrm{m}^{3}$ A1
temperature or amount of gas constant B1
(ii) (pressure) increases B1
speed/K.E. of molecules increases B1
(molecules) hit walls harder or with more force B1
hit more often /more frequently B1
[8](15)
11 (a) fuse B1
limits the current (not controls current) B1
switch B1
turns current/bulbs/circuit on and off B1
(b) (i) $\mathrm{I}=\mathrm{P} / \mathrm{V}$ or 60/240 C 1
0.25 (A) A1
(ii) 0.42 -(i) C 1
0.17 (A) A1
(iii) $\mathrm{R}=\mathrm{V} / \mathrm{I}$ or 240/(i) C 1

960 (Ω) A1
units correct in (i), (ii) and (iii) B1
(c) (i) supply and two lamps in series B1
(ii) smaller than B1
higher resistance in series or lamps have less than 240 V across them B1
(d) $2 \times$ (iii) or twice as large or $1920 \Omega \quad$ B1

Mark Scheme Code

B1 Independent mark
C1 Compensation mark; given automatically if the answer is correct, i.e. the working need not be seen if the answer is correct; also given if the answer is wrong but the point is seen in the working.
M1 Method mark: if not given subsequent A marks fall (up to next B, M or C mark).
A1 Answer mark.
c.a.o. correct answer only (including unit)
e.e.o.o. each error or omission
e.c.f. error carried forward; it usually is even where not specifically indicated, i.e. subsequent working including a previous error is credited, if otherwise correct.

