MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

5054 PHYSICS

5054/22
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Section A

1 (a) components shown on correct diagram with correct resultant (i.e. towards NE) and a scale given
$540(\pm 10) \mathrm{m}$
$22^{\circ} \pm 3^{\circ} \mathrm{E}$ of N with correct diagonal
(b) idea that ends at start, returns in opposite direction

2 (a) energy/time
1 joule in one second
(b) (i) 5800 N or 5684 N or 5700 N
(ii) $m g h$ algebraic, words or numerical (i.e. $580 \times 10 \times 12$)

69600 J or 70000 J or 68208 J or 68000 J
(iii) (efficiency =) output power or energy/input power or energy algebraic or numerical or 93000 seen or 4640 seen
0.75 or 75% (accept 0.748) e.c.f. from (ii)

C1
A1 [2]

B1 [1]
C1
A1 [2]

C1
A1 [2]
[Total: 7]

3 (a) radiation or infra-red or electromagnetic waves \quad travels through space/vacuum or does not require medium/molecules/particles or medium required for conduction and/or convection or for other methods
(b) conduction occurs
or atoms/particles/molecules vibrate or electrons given energy B1
heat/energy/vibration passed on from one particle to another or electrons move to other parts/diffuse/hit atoms B1 [2]
(c) $\quad(Q=) m c T$ algebraic or numerical in any form (e.g. $\left.1.2 \times 10^{6}=m \times 400 \times 20\right)$ 150 kg

C1
A1 [2]

Page 3	Mark Scheme: Teachers' version	Syllabus
	GCE O LEVEL - May/June 2010	5054

4 (a) increased/high(er) temperature/hot(ter) wind or air flow less humidity less pressure

ANY 2 lines

(b) molecules/atoms/particles escape/leave (surface)
or molecules become gaseous/vapour
or molecules break bonds
molecules with large(est) energy/high(est) speed sufficient or enough energy escape/break bonds/become gaseous or leave behind slow/less energetic molecules

5 (a) (i) smallest angle of incidence for total internal reflection or greatest angle of incidence that allows refraction or angle of incidence for (refracted) ray along surface/angle of refraction 90°
(ii) correct angle marked to normal (by eye)
(iii) ray along surface or reflected ray correct (by eye) or both rays
(b) ray in air refracted away from normal

B1 [1]
(c) refractive index $=\sin i / \sin r$ algebraic or numerical e.g. $1.5=\sin 50 / \sin r \quad \mathrm{C} 1$
31° accept $30.71,30.7$ degree symbol required somewhere

6 (a) (i) electrons
B1 [1]
(ii) neutralised/charge becomes zero/loses all charge/charge goes to earth electrons move to plane/tyres from ground/earth/zero potential/surface/land B1 B1 [2]
(b) (otherwise) plane/tank/fuel becomes or is charged or charge builds up in some way or stays neutral/uncharged or (earthing) conducts charge away (to ground) avoids sparks or prevents explosion/fire/fuel igniting/blast or sparks/fires, etc. may be produced

Page 4	Mark Scheme: Teachers' version	Syllabus.
	GCE O LEVEL - May/June 2010	5054

7 (a) both arrows point inwards both arrows extended must pass through base of bar magnet N marked on both needles nearest S pole
(b) (current causes) coil/iron to become magnet/an electromagnet/creates magnetic field iron (in coil) attracts/pulls (pivoted) iron/armature (and L-shaped iron rotates/moves/turns) not contacts attract each other
(c) (i) resistance decreases

B1 [1]
$\begin{array}{ll}\text { (ii) series circuit/loop with C and lamp } & \text { C1 } \\ \text { completely correct circuit with a battery } & \text { A1 }\end{array}$
A1 [2]
[Total: 7]

8 (a) (i) Geiger Muller/GM tube or any other gamma detector
B1 [1]
(ii) keep distance e.g. forceps/tongs
barrier accept gloves, lead suit, metal container time of use accept use badge

> ANY ONE

B1 [1]
(iii) (with source) take a count for a time or take count rate (from a ratemeter/meter/count meter/counter)
or read ratemeter (connected to GM tube) or record number of tracks (chamber)
or count clicks in a time or note time when click occurs
or several readings taken or readings fluctuate ignore readings random or time when click occurs varies
(b) electromagnetic \quad B B1 B1 [2]
[Total: 6]

Page 5	Mark Scheme: Teachers' version	Syllabus
	GCE O LEVEL - May/June 2010	5054

Section B

9 (a) (i) distance travelled while thinking/in reaction time or before braking starts
(ii) distance travelled while brakes applied/car decelerates
(b) (i) speed (of cars) or same force/pressure on pedal or same braking force or same tyres or condition of brakes

B1 [1]
(ii) greater inertia/kinetic energy/momentum or smaller deceleration/acceleration

B1 [1]
(c) any road condition, e.g. icy, wet, poor surface, slippery/smooth/rough surface and its correct effect on distance

B1 correct explanation that refers to friction e.g. more friction when dry

B1 [2]
(d) pressure low(er) (with larger area)

B1 [1]
(e) (i) $a=v / t$ any algebraic or numerical value e.g. 20/4; 20/3.4; 20/4.6; 20/0.6 $5(.0) \mathrm{m} / \mathrm{s}^{2}$
(ii) $F=m a$ algebraic or numerical e.g. $900 \times$ (i) 4500 N e.c.f. (i)
(iii) correct axes labelled with quantity and/or unit

B1
horizontal line at $20 \mathrm{~m} / \mathrm{s}$ from 0 to 0.6 s
B1
straight line from end of horizontal section or from $(0.6,20)$ to $(4.6,0)$ or $(4,0)$
B1 [3]
(iv) area (under graph or of trapezium)

B1 [1]
[Total: 15]

10 (a) how sound is made e.g. gun, clap hands, hit metal B1
correct measurement of time, e.g. from seeing flash to hearing sound, clap-echo B1
correct measurement of distance, e.g. gun to observer, observer to wall B1 correct calculation for measurements, e.g. d / t or 2d/t B1
precaution e.g. time clap on echo and time 10; ensure no wind; repeat in opposite direction; repeat and average; use large distance; use more than 200 m
(b) (i) (sound/wave/vibration) of high frequency or (sound that) cannot be heard (frequency) above $15-20 \mathrm{kHz}$
(ii) $f=1 / T$ or $6 \times 10^{-6}(\mathrm{~s})$ seen or $2,3,4$ pulses in $12,18,24 \mu$ s
1.7×10^{5} allow 166667

C1
A1 [2]
(iii) not all sound is reflected (from back surface) or some passes through the back (some energy/sound) absorbed (by metal)
(sound/energy) spreads out/scattered/reflected in other directions/dispersed/ travels a (greater) distance any 2 lines
(iv) at least one pulse half way between S and R in the long gap
total height of pulse smaller than S and 3 or more drawn and labelled C
(v) $v=f \lambda$ in any algebraic or numerical form e.g. $4000 / 8 \times 10^{6}$
$5(.0) \times 10^{-4} \mathrm{~m}$to change temperature
A1
(ii) curved line starting at origin
correct curvature from origin with decreasing gradient allow zero gradient not negative gradient
$\begin{array}{lll}\text { (c) } & \text { (i) } 1 \begin{array}{ll}\text { (current) increases } & \text { B1 } \\ & \\ & \text { thermistor resistance decreases }\end{array} & \text { B1 }\end{array}$
2 (voltmeter reading) increases
B1
greater fraction of voltage across resistor or potential divider equation explained or greater current through fixed/constant/2000 Ω resistor
(ii) (voltage across thermistor) 2.2 (V) or attempt to use potential divider formula (current) $3.8 / 2000$ or 1.9×10^{-3} (A)
or $3.8=6 \times 2000 /(R+2000)$ or other correct potential divider equation

$$
1200 \Omega \text { allow } 1157-1160
$$

