MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

5054 PHYSICS

5054/21
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

> | > Page 2 | Mark Scheme: Teachers' version | Syllabus |
| :---: | :---: | :---: |
| > | GCE O LEVEL - May/June 2011 | 5054 |
| > | | |

Do not accept fractions. No penalty for 2 sig. fig. or for 1 sig. fig. where exactly correct. Only one unit and only one fraction penalty per question.

Section A

1 (a) (i) $11.5 \mathrm{~m} / \mathrm{s}$
(ii) decrease in speed // negative gradient
equal changes/decreases in speed in the same time // const. neg. grad. on v-t graph
$\begin{array}{lll}\text { (b) (i) } \begin{array}{ll}\text { flat line at } 18 \mathrm{~m} / \mathrm{s} \text { from } t=0 \text { to } 15 & \text { B1 } \\ & \text { constant slope downwards parallel to initial line (by eye) }\end{array} & \text { B1 }\end{array}$
(ii) greater area under graph // higher initial/average speed

2 (a) (i) X weight // (force of) gravity // gravitational (force) and Y air resistance // (air) drag // wind resistance // air friction
(ii) (Y) opposes motion // diver moves down // air molecules hit faster from below

3 (a) (i) 7000 (J) seen or 50% used somewhere
C1
($P=$) E/t // 14000/t // 7000/t seen // $7000 \mathrm{~J} /$ minute // $420000 \mathrm{~J} / \mathrm{hour}$ C1 120 W
(ii) water after hitting turbine still moves // has KE/energy/velocity // energy lost due to friction // friction and location // heat/internal energy and location // water misses turbine
(b) (i) can be replaced/made // will not run out
(ii) coal, oil, gas, peat, nuclear, uranium (not solar)

Page 3	Mark Scheme: Teachers' version	Syllabus
	GCE O LEVEL - May/June 2011	5054

4 (a) $(E / Q=) m c \Delta T$ in any algebraic or numerical form e.g. $4200 \times 16,2100 \times 5$ 67200 or 10500 or 77700 seen or ($E / Q=$) ml or mL algebraic seen $4.2 \times 10^{5} \mathrm{~J}$
(b) (i) break bonds // separate molecules // give molecules more P.E.
(ii) (different) change in distance // molecules not so far apart // incomplete bond breaking // doesn't push atmosphere back // less work against atmosphere

B1

5 (a) gives out (visible) light // glows
when hit by uv/electrons or spark/discharge/current in tube
(b) X-rays or gamma
(c) ($f=$) v / λ numerical or any algebraic form, e.g. $v=f \lambda$
$8.3 \times 10^{14} \mathrm{~Hz}$

C1
A1

6 (a) reflection (of sound/ultrasound)
(b) waves of same period (by eye)

B1
smaller amplitude (by eye)
(c) (i) $20-20000 \mathrm{~Hz}$

B1
(ii) higher than (i)

B1

7 (a) upward arrow (not curved) on iron bar
(b) attraction/force not enough//weight of bar too high//friction at pivot/with copper bar
(c) three of:
electromagnet works // magnetic field created
iron bar moves/lifted up
spring pulls copper bar across/contracts contacts break circuit // contacts open
(d) more turns in coil // more iron in electromagnet // electromagnet nearer iron bar // M1
iron bar less weight // weaker spring correct explanation which involves force on iron bar

8 (a) all three correct: force, field, current
(b) (i) Fd // $20 \times 4 ; 20 \times 2 ; 20 \times 0.04 ; 20 \times 0.02 ; 20 \times 4 \times 2 ; 160$
$80 \mathrm{Ncm}, 0.8 \mathrm{~N} \mathrm{~m}$
(ii) more turns (on coil)
use soft iron
more current
increase $A B$ or $C D$
increase BC or AD ANY 2

Section B

9 (a) (i) d.c. current flows in one direction or
a.c. current flows in one direction then the other
(ii) mention of magnetic field/flux
B1
(magnetic) field lines // flux cuts coil // flux changes in coil B1
induction of voltage/current
something relevant reverses (e.g. field/flux cuts in one direction then the other // N pole approaches then leaves // N pole approaches and S pole approaches) and link to a.c.
(iii) two of: thicker wires; more turns of coil; stronger magnet; faster rotation; lower resistance (of lamp)
$\begin{array}{ll}\text { (b) (i) to reduce heat/energy/power loss (on the power lines) } & \text { B1 } \\ & \text { (higher voltage means) lower current }\end{array}$
(ii) $25: 400 / / 1: 16 / / 0.0625$

(iii) reduces resistance // less power loss // costs less to run // more current //
more power
increases weight // more support needed // more wind resistance // more ice forms // costs more to install
$\begin{array}{ll}\text { (iv) } 13 \mathrm{~A} & \mathrm{~B} 1 \\ (I=) P / V \mid / 42 \mathrm{~A} \| 4.17 \text { etc } \mathrm{A} & \mathrm{B} 1\end{array}$
($I=$) P/V |/ 4.2 A // 4.17 etc A B1
must choose higher value to avoid fuse blowing // other fuses melt B1

10 (a) (i) brown and green
red
(ii) 99×10^{9} or $9.9 \times 10^{10} \Omega$
$\begin{array}{ll}\text { (iii) less: (likely to) burn out/blow // become too hot } & \text { B1 } \\ \text { greater: (likely to) be large (in size) } & \text { B1 }\end{array}$
(b) (i) both involve energy and charge $/ /$ measured in $\mathrm{J} / \mathrm{C} /$ volts/by voltmeter energy change is from other forms (accept chemical) to electrical in e.m.f.
energy change is from electrical to other forms (accept heat/light) in p.d.(or e.m.f. is property of source and p.d. is property of (part of) circuit B2)
$\begin{array}{ll}\text { (ii) correct symbol } & \text { B1 } \\ \text { correct direction } & \text { B1 }\end{array}$
(iii) p.d. reduces/(approximately) constant and current reduces
(iv) $R=V / I$ in any form, e.g. 1.7/0.025, 1.7/25 C1
correct conversion to mA, e.g. 0.025/7.3 seen
C1
68 or 360 seen C1
$290 \Omega, 292 \Omega$
11 (a) (i) 24
(ii) charges (of electrons and protons) cancel // protons and electrons have the same (size of) charge but opposite in sign
(ii) beta 0 at top
beta -1 at bottom B1
Mg 24 at top B1
Mg 12 at bottom B1
(c) (i) 600 at 15 hours B1

300 at 30 hours B1
line of decreasing gradient (not if it cuts time axis before $t=30$) B1
(ii) emission is random // not predictable // not regular // exptl. error B1
(iii) 4800 (counts per minute) // 80 counts $/ \mathrm{sec}$ B1
(iv) GM tube/solid state detector/cloud chamber M1
ratemeter/data logger // counter/scalar and stopwatch/timer

