MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

5054 PHYSICS

5054/22
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Section A

1 (a) (uses spring balance) for a reading/value // finds weight/force of gravity divides reading/weight by $10 / \mathrm{g} / /$ uses $W=m g$
(b) reading (of measuring cylinder) taken with liquid/water (alone) // initial volume mentioned // fill to certain level measure increase/change when stone (totally) immersed/in cylinder
(c) 2.1 or $2.14 \mathrm{~g} / \mathrm{cm}^{3} / / 2142.86 \mathrm{~kg} / \mathrm{m}^{3} / / 0.00214286 \mathrm{~kg} / \mathrm{cm}^{3}$
(d) mass unchanged and weight less

2 (a) chemical (potential) energy at start
B1
gravitational/potential energy increases B1
thermal energy/heat/internal energy produced
(b) energy not created/lost/destroyed // energy only changes form // total energy constant and at least one attempt to explain a conversion in the journey // all ends up as heat
(c) $(h=) \mathrm{PE} / m g$ numerical or algebraic seen, e.g. $5400 / 10 \times 60$ 9(.0) m C1 A1

3 (a) (i) molecules have more kinetic energy/speed/velocity
hit sides hard(er)/with more force // (initially) hit sides (more) often/frequently // create large(r) pressure (initially)
(ii) (larger) forces between liquid molecules/(stronger) bonds
(b) (i) $P_{1} V_{1}=P_{2} V_{2}$ numerical or algebraic
C1
$6(.0) \mathrm{cm}^{3}$
A1
(ii) temperature is constant // no gas enters/leaves // mass constant
Page 3 \quad Mark Scheme: Teachers' version

4 (a) $2(.0) \mathrm{mm}$
(b) same period (by eye), with at least one wave opposite phase to wave drawn
(c) (i) ($f=$) $1 / T$ numerical or algebraic seen (e.g. $1 / 0.5$) // 1 wave in $0.5 \mathrm{~s} / / 2$ waves in 1 s
2(.0) Hz A1
(ii) $v=f \lambda / / 8 \times 2$ or $8 \times$ (i) $/ / 16(\mathrm{~cm} / \mathrm{s}) / / 5$ (wavelengths from centre to edge) // $(t=) d / v$
2.5 s ecf from (i) - i.e. accept $5 /(c)$ (i)

5 (a) ammeter in series with supply $/ /$ ammeters in series with A and in series with $B \& C \quad B 1$ A across cell with no switch (condone closed switch) not $-\otimes-\quad$ B1 B and C in series with switch (closed or open) and cell B1
(b) (i) $(R=) V / I$ in any form numerical or algebraic, e.g. $8 / 50,8 / 0.05$

$$
\begin{equation*}
160 \Omega \tag{B1}
\end{equation*}
$$

(ii) $50 \mathrm{~mA} / / 0.05(0) \mathrm{A}$

6 (a) no shock // no electrocution
(if) case becomes live // live touches case B1
(b) correct conversion to $\mathrm{kW}, 0.5$ seen // conversion to hours // $0.75 / / \frac{45}{60} / /(E=) P \times t \mathrm{C} 1$ $0.375 / / 0.38 / / 0.37$ (kW h)

7 (a) (same) electrons/beam produced/emitted by heating // thermionic emission occurs
(b) no beam produced // electrons do not reach screen/do not pass anode/not emitted
electrons/beam repelled by negative/anode // electrons no longer attracted by anode // electrons/beam attracted by positive/filament

Page 4	Mark Scheme: Teachers' version	Syllabus
	GCE O LEVEL - May/June 2011	5054

8 (a) fission cao
(b) neutron hits/goes inside (U) nucleus atom/nucleus/particle/uranium/nuclide splits/forms daughter nuclei and emits neutrons/energy
(c) (i) emits particles // emits ionising/nuclear radiation // spontaneous or random emission (of radiation) // atom/nucleus decays
(ii) long time to decay // radioactive for a long time // decays slowly long time for any quantity to halve
halving of:
count, count rate, emissions, (number of) nuclei, (number of) atoms, activity

Section B

9 (a) (i) curve with decreasing gradient from origin to $50 \mathrm{~m} / \mathrm{s}$ at $10 \mathrm{~s} \quad$ B1
constant speed from 10 to 20 s B1
decrease to $5 \mathrm{~m} / \mathrm{s}$ at $25 \mathrm{~s} \quad$ B1
constant speed from 25 s until at least $30 \mathrm{~s} \quad$ B1
$\begin{array}{ll}\text { (ii) gradient/slope not constant/decreases // graph curves // graph not a (straight) } & \\ \text { line } / / \text { increase (in speed) per second/unit time not equal } & \text { B1 }\end{array}$
(b) any mention of air resistance/drag/upward force B1
(initially) force upwards larger than force downwards // resultant force upwards B1
air resistance decreases (with fall in speed) B1
(at constant speed) air resistance/friction/drag equals weight //
forces (up and down) balance // zero resultant force
(c) 500 m
(d) (i) $(a=) \frac{v-u}{t}$ in any numerical or algebraic form, e.g. 45/5
$9(.0) \mathrm{m} / \mathrm{s}^{2} \quad \operatorname{ecf}(\mathrm{a})(\mathrm{i})$
A1
(ii) $\begin{array}{lll}(F=m a) \\ 540 \mathrm{~N}\end{array}$ in any numerical or algebraic form, e.g. 60×9 ecf (i) $\quad \begin{aligned} & \text { C1 } \\ & \text { A1 }\end{aligned}$
(iii) area under graph/line/curve

Page 5	Mark Scheme: Teachers' version	Syllabus
	GCE O LEVEL - May/June 2011	5054

10 (a) suitable block (semicircular/rectangular/prism)
suitable source of rays (e.g. ray box; pins on incident ray; laser not torch)
must be labelled on diagram or clear in text diagram showing incident ray in glass/perspex (no arrow needed) and correct refraction out into air
adjustment of (angle of incidence of) ray until along surface/just no longer B1
emerges
(measure) correct angle marked or described clearly or C marked on diagram
(b) (i) converging or convex
(ii) ray from top through middle of lens undeviated B1
other ray from top of object to same position on film M1
correct image labelled/drawn/marked A1
(iii) ratio of size/height/length/distance of image to size/height/length/distance of object

B1
(iv) $0.4(0)(\pm 0.05)$ no ecf (iii)

B1
(v) upside down // inverted // real // other side of lens to object // nearer lens than object

B1
(vi) (otherwise) not focussed // to/adjust focus // to produce a clear/sharp image // B1
(otherwise) rays do not converge on film // to converge rays onto film //
image on film // object at different distance
(otherwise) image formed in front of film // object now further A1

11 (a) (i) $50^{\circ} \mathrm{C}$ and $24 / 25^{\circ} \mathrm{C} \quad \mathrm{B} 1$
(ii) heat loss or evaporation mentioned // molecules escape // liquid to vapour C1 more heat loss or more evaporation etc. because temperature is higher A1
(iii) temperature becomes $100^{\circ} \mathrm{C} / /$ reaches boiling point $/ /$ temperature becomes B1
steady
water boils // water turns to steam/gas // energy loss = energy gain B1
(b) (i) ($c=$) $E / m \Delta T$ in any form, numerical or algebraic, e.g. $7400 / 72 \times 23 \quad \mathrm{C} 1$
4.5 or 4.47 or $4.4686 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right) / / 4468.6 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right) \quad \mathrm{A} 1$
(ii) $(E=) \frac{1}{2} m v^{2}$ algebraic only C1
$1 / 2.0 .072 .450^{2}$
C1
$7300 \mathrm{~J} / / 7290 \mathrm{~J}$ (7 290000 (J) alone gets 2/3) A1
(iii) water molecules move/vibrate fast(er)/(more) vigorously B1
water molecules random motion // move (more) throughout liquid/all directions // slide over each other // move in convection // hit more often // move further apart
bullet molecules motion in one direction/away from gun/towards target/ all have same (increase in) speed
(c) two different metals at any junction/two outside wires if three used B1 joined wires connected to meter/voltmeter/ammeter/galvanometer

