S/NO	REF	O.NO	OBJECTIVE
1	5054/42 N 17	Q. 1	Investigates the period of a simple pendulum.
2	5054/42 N 16	Q. 4	Volume of blue tack
3	5054/42 J 16	Q1	(Pendulum) Investigate the oscillation of meter rule
4	5054/42 J 16	Q3	Weight and parallax error
5	5054/42 J 16	Q. 4	Diameter of a central cylinder
6	5054/42 N 15	Q,2	Determine the diameter of beach ball
7	$5054 / 42$ N 15	Q. 3	Measure the length of laboratory
8	5054/42 J 15	Q. 1	Length of running track (trundle Wheel)
9	$5054 / 42$ N 14	Q. 4	Diameter of a cylinder method
10	5054/42 J 14	Q. 1	Investigate the floating wooden rod
11	$5054 / 42$ N 13	Q. 4	Diameter of a marble balls
12	5054/42 J 13	Q. 3	Volume of a glass stopper
13	5054/42 N 12	Q. 3	Investigate the behavior of a pendulum
14	5054/42 J 12	Q. 2	(Pendulum) Uses pendulum to obtain acceleration of free fall
15	5054/42 N 10	Q. 1	(pendulum) Investigate the movement of meter rule
16	5054/42 J 10	Q. 2	(Pendulum) Wooden rule with hole
17	5054/42 N 08	Q. 3	Zero error on micro meter screw gauge
18	5054/42 J 08	Q. 1	Time and height of the ball
19	5054/42 J 07	Q. 1	Pendulum A chain of paper clip
20	5054/42 N 06	Q. 2	Pendulum Half rotation
21	5054/42 N 04	Q. 1	Average diameter of wire
22	5054/42 J 04	Q. 4	Volume of metal piece
23	5054/42 N03	Q. 2	(Pendulum) Thread support to scale
24	5054/42J 03	Q. 4	
25	5054/42J 03	Q. 5	pendulum bob supported by two threads. The two threads are suspended from jaws of clamps held in separate retort stands.

| CURAR | | | |
| :---: | :---: | :---: | :--- | :--- |
| $\mathbf{1}$ | $5054 / 42$ J 18 | Q.1 | A student measures the resistance of a lamp when there are
 different currents in the lamp |
| $\mathbf{2}$ | $5054 / 42$ N 17 | Q.4 | Investigates how the resistance of a wire depends upon its
 length. |
| $\mathbf{3}$ | $5054 / 42$ J 17 | Q.2 | investigates the effect of three different insulating materials on
 the cooling of hot water in a beaker |
| $\mathbf{4}$ | $5054 / 42$ N 16 | Q.2 | Resistance of lead |
| $\mathbf{5}$ | $5054 / 42$ N 15 | Q.4 | Determine the resistance of a resistor |
| $\mathbf{6}$ | $5054 / 42$ J 14 | Q.2 | Investigate the ammeter in the circuit |
| $\mathbf{7}$ | $5054 / 42$ N 13 | Q.3 | Use a lemon to make a simple cell |
| $\mathbf{8}$ | $5054 / 42$ J 12 | Q.3 | Series and parallel combination |
| $\mathbf{9}$ | $5054 / 42$ J 11 | Q.3 | Combination of series and parallel combination |
| $\mathbf{1 0}$ | $5054 / 42$ N 09 | Q.4 | Measure the resistance of nichrome wire |
| $\mathbf{9}$ | $5054 / 42$ N 08 | Q.4 | Value of current and potential difference |
| $\mathbf{1 1}$ | $5054 / 42$ J 08 | Q.2 | Potential difference and circuit fault |

| $\mathbf{1 2}$ | $5054 / 42 \mathrm{~N} 06$ | Q.4 | Resistance of a wire varies with its length |
| :---: | :---: | :---: | :--- | :--- |
| $\mathbf{1 3}$ | $5054 / 42 \mathrm{~J} 06$ | Q.3 | Electrical component box |
| $\mathbf{1 4}$ | $5054 / 42 \mathrm{~N} 03$ | Q.3 | Determine the potential difference across the resistor |
| \mathbf{C} | | | |
| $\mathbf{1}$ | $5054 / 42 \mathrm{~J} 19$ | Q.4 | A box contains an unknown electrical component. This
 component is connected to two terminals P and Q on the
 outside of the box. |
| $\mathbf{2}$ | $5054 / 42$ N18 | Q.1 | A student investigates how the current in a thermistor depends
 upon temperature. |
| $\mathbf{3}$ | $5054 / 42$ N16 | Q.3 | Investigate the current in diode |
| $\mathbf{4}$ | $5054 / 42$ J 15 | Q.3 | Use CRO to measure the voltage |
| $\mathbf{5}$ | $5054 / 42$ N 14 | Q.3 | Resistor color band and circuit combination |
| $\mathbf{6}$ | $5054 / 42$ J 13 | Q.4 | Investigate the maximum e.m.f produce by a solar cell |
| $\mathbf{7}$ | $5054 / 42$ N 06 | Q.3 | C R O Frequency and voltage |
| $\mathbf{8}$ | $5054 / 42$ N 05 | Q.1 | Resistance of LDR |
| $\mathbf{9}$ | $5054 / 42$ N 05 | Q.2 | Current in LDR |
| $\mathbf{1 0}$ | $5054 / 42$ N 04 | Q.2 | Resistance of thermistor change with temperature |
| $\mathbf{1 1}$ | $5054 / 42$ J 04 | Q.2 | Function of diode |

KINEMATICS

1	5054/42 J17	Q. 3	A student investigates the maximum height h to which a ball bounces after hitting a laboratory bench.
2	5054/42 J17	Q. 1	A student measures the acceleration of free-fall ball drop
3	5054/42 J15	Q. 2	How area of parachute effect the time
4	5054/42 J 13	Q. 2	Distance time graph of a journey
5	5054/42 J 11	Q. 1	Motion of a car down the ramp
6	5054/42 N 07	Q. 1	Terminal velocity of metal ball in an oil jar
7	5054/42 J 05	Q. 4	Paper clipper
FORCES			
1	5054/42 N 14	Q. 2	Investigate the use of pulley to fit a load
2	5054/42 J 09	Q. 2	Three newton meter to find the vector sum of the forces
3	5054/42 J 07	Q. 4	Weight and volume
4	5054/42 J 06	Q. 1	Hook's law spring
Volume and density			
1	5054/42 J 18	Q. 4	A student measures the density of copper using a balancing method.
2	5054/42 N 16	Q. 1	Determine density of liquid
3	5054/42 J 14	Q. 4	Density of microscope glass slide
4	5054/42 N 10	Q. 3	Coin is made from pure copper
5	5054/42 J 08	Q. 3	Measuring instrument and volume of air in laboratory
6	5054/42 J 05	Q. 1	Type of glass /density based
7	5054/42 N 03	Q4	Volume of water
Moments			
1	5054/42 N 09	Q. 1	Balance a meter rule

PRESSURE

1	5054/42 J 18	Q. 3	A student measures the least pressure that a rectangular wooden block exerts on a table.
2	5054/42 N 08	Q. 1	Variation of depth with manometer
3	$5054 / 42 \mathrm{~N} 05$	Q. 4	Pressure change volume
4	5054/42 J 10	Q. 1	Efficiency of motor
Heat and thermal			
1	5054/42 J 19	Q. 1	A student determines an approximate value for the specific heat capacity of water by an electrical method.
2	85054/42 N 17	Q. 2	investigates the effect of insulation on the rate of cooling of hot water in a beaker
3	5054/42 J 17	Q. 3	investigates the effect of three different insulating materials on the cooling of hot water in a beaker
4	5054/42 J 15	Q. 4	Cooling curve Method (not graph)
5	5054/42 N 12	Q. 2	Measure the specific heat of the water
6	5054/42 J 12	Q. 1	Investigate the cooling of water
7	5054/42 N 11	Q. 3	Convection current in water
8	5054/42 J 11	Q. 4	Effect of surface Colour on the cooling
9	5054/42 N 10	Q 2	Heating curve of a water
10	5054/42 J 10	Q. 1	Flow of oil at different temperature
11	5054/42 J 09	Q. 1	Rate of evaporation
12	5054/42 J 09	Q. 4	Measure the specific heat capacity
13	5054/42 J 08	Q. 4	Thermometer
14	5054/42 J 07	Q. 3	Cooling curve of water
15	5054/42 J 05	Q. 3	Specific heat capacity of lead
16	5054/42 N 04	Q. 3	Temperature of accetephone become a solid Cooling curve
17	5054/42 J 04	Q. 3	Thermometer Length of mercury
18	5054/42 N 03	Q. 5	Brass and water
19	5054/42 J 03	Q3	Heat capacity of liquid

Light

| $\mathbf{1}$ | $5054 / 42$ J 18 | Q.2 | A student uses a ray box to investigate the refraction of a ray of
 blue light as it passes through a glass prism.
 A student measures the focal length of a convex lens. |
| :---: | :---: | :---: | :--- | :--- |
| $\mathbf{2}$ | $5054 / 42$ N 18 | Q.2 | A student investigates the reflection of light by a plane mirror. |
| $\mathbf{3}$ | $5054 / 42$ J 18 | Q.2 | A seares the refractive index of the material of a transparent |
| $\mathbf{4}$ | $5054 / 42$ N 17 | Q.3 | Measur
 block ABCD by tracing the path of a ray of light through it. |
| $\mathbf{5}$ | $5054 / 42$ J 17 | Q.4 | Investigates how the height of the shadow cast by the object on
 the screen changes. |
| $\mathbf{6}$ | $5054 / 42$ J 16 | Q.2 | (prism) Ray diagram |
| $\mathbf{7}$ | $5054 / 42$ N15 | Q.1 | (lens) Focal length of converging lens |
| $\mathbf{8}$ | $5054 / 42$ J 14 | Q.3 | Investigate the refraction of light in glass block |
| $\mathbf{9}$ | $5054 / 42$ N 13 | Q.2 | Investigate the reflection of light |
| $\mathbf{1 0}$ | $5054 / 42$ J 13 | Q.1 | Determine the focal length of a lens |
| $\mathbf{1 1}$ | $5054 / 42$ N 12 | Q.4 | Investigate the deviation of ray in the glass prism |
| $\mathbf{1 2}$ | $5054 / 42$ N 11 | Q.1 | Measure the focal length of converging lens |
| $\mathbf{1 3}$ | $5054 / 42$ J 11 | Q.2 | Effect of converging lens on light from the sun |

14	5054/42 J 10	Q. 4	Ray diagram with circular glass block
15	5054/42 N 09	Q. 3	Prism Incident ray and emergent ray
16	$5054 / 42$ N 08	Q. 2	image on plane mirror
17	$5054 / 42 \mathrm{~N} 07$	Q. 3	Refraction of light (glass block)
18	5054/42 J 07	Q. 2	Ray of light on plan mirror
19	5054/4 N 06	Q. 1	Volume of glass prism
20	5054/42 J 06	Q. 4	Volume of glass in convex lens
22	5054/42 N 05	Q. 3	focal length of a lens
23	5054/42 N 04	Q. 4	Glass prism (ray diagram)
24	$5054 / 42 \mathrm{~N} 04$	Q. 5	Converging lens used as magnifying glass
25	5054/42 J 04	Q. 1	Ray diagram
26	5054/42 J 04	Q. 5	Lens Distance of image /distance of object
27	5054/42 N 03	Q. 1	Ray diagram glass block angle of incident REFRACTION
28	5054/42 J 03	Q. 1	Plane mirror Ray diagram
MAGNET ANE ELECTROMAGNET			
1	5054/42 N 18	Q. 4	A student uses a plotting compass to plot the pattern of the magnetic field between the North poles of two bar magnets.
2	$5054 / 42$ N 14	Q. 1	Investigate the magnetic field due to a bar magnet
3	$5054 / 42$ N 13	Q. 1	Investigate how a magnetic force varies with distance
4	5054/42 J 12	Q. 4	Investigate the old magnets' magnetic field
5	$5054 / 42$ N 11	Q. 2	Force on a wire carrying current in a magnetic field
6	$5054 / 42$ N 10	Q. 4	Strength of a magnet
7	$5054 / 42$ N 07	Q. 2	Current in a straight wire
8	5054/42 J 06	Q. 2	Strength of electro magnet depends on no of coil of wire
9	5054/42 J 03	Q. 2	Magnetic field
Waves			
1	5054/42 N 12	Q. 1	Investigate the speed of water wav
Sound			
1	5054/42 N 18	Q. 3	A student and her friend measure an approximate value for the speed of sound in air using echoes.
2	5054/42 N 09	Q. 2	Speed of sound in air
Radioactivity			
1	5054/42 N 11	Q. 4	Existence of background radiation

