1. Nov/2021/Paper_12/No.3

A skier slides down a slope.

The diagram shows how his speed varies with time.

What is his average acceleration during the 6.0 s2

- **A** $2.2 \, \text{m/s}^2$
- **B** $4.3 \, \text{m/s}^2$
- $C = 8.0 \,\mathrm{m/s^2}$
- **D** $13.0 \,\mathrm{m/s^2}$

2. Nov/2021/Paper_21/No.2c

(c) The lift accelerates upwards uniformly from rest for 4.0s and then decelerates uniformly to rest in 4.0s. The total distance travelled is 8.0 m.

On Fig. 2.2, sketch the distance-time graph for this journey.

Fig. 2.2

3. June/2021/Paper_11/No.3

A train sets off from a station at time t = 0. The graph shows how the distance between the train and the station varies with time.

Which statement about the movement of the train between time t_1 and t_2 is correct?

- A Its speed is decreasing and it is moving away from the station.
- **B** Its speed is decreasing and it is moving towards the station.
- C Its speed is increasing and it is moving away from the station
- **D** Its speed is increasing and it is moving towards the station.

4. June/2021/Paper_11/No.4

A coin falls from rest through the air and eventually reaches a constant speed.

There is a resultant force acting on the coin due to the two forces P and Q shown in the diagram.

What happens to force P and what happens to the resultant force before the coin reaches constant speed?

	force P	resultant force
Α	decreases	increases
В	decreases	decreases
С	increases	decreases
D	increases	increases

5. June/2021/Paper_22/No.2

A car approaches a set of traffic lights. The lights change to red at time t = 0.

Fig. 2.1 shows how the speed of the car changes with time.

Fig. 2.1

(a)	The	car starts to slow down a short time after the lights change to red.
	Det	ermine the time between the lights changing to red and the car starting to slow down.
(b)	(i)	State what is meant by uniform acceleration.
		[1
	(ii)	State how Fig. 2.1 shows that the deceleration of the car between $t = 2s$ and $t = 7s$ is non-uniform.
		[1
(~)	Dot	arming the distance the car travels from the moment the car starts to slow down until i

(c) Determine the distance the car travels from the moment the car starts to slow down until it stops.