# Nuclear physics – 2021 O Level 5054

### 1. Nov/2021/Paper\_11/No.38

Technetium-99m is a radioactive isotope used in medical scanning. It is injected into the body and its emissions are detected outside the body.

Which characteristics of technetium-99m make it suitable for use in medical scanning?

- A It has a long half-life and emits alpha radiation.
- **B** It has a long half-life and emits gamma radiation.
- C It has a short half-life and emits alpha radiation.
- **D** It has a short half-life and emits gamma radiation.

#### 2. Nov/2021/Paper 11/No.39

Which statement about the production of electricity in a nuclear power station is correct?

- A In the reactor, the main reaction occurs when protons hit uranium nuclei.
- **B** The process taking place in the reactor is called nuclear fusion.
- **C** The reactor produces energy to boil water and to produce steam.
- **D** Carbon dioxide is the major waste product from the reactor.

### 3. Nov/2021/Paper\_11/No.40

In the simple model of an atom, X orbits around Y.



What are X and Y?

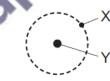
|   | Х        | Y        |
|---|----------|----------|
| Α | electron | nucleus  |
| В | neutron  | electron |
| С | nucleus  | proton   |
| D | proton   | neutron  |

### **4.** Nov/2021/Paper\_12/No.37

Which statement about the production of electricity in a nuclear power station is correct?

- A In the reactor, the main reaction occurs when protons hit uranium nuclei.
- **B** The process taking place in the reactor is called nuclear fusion.
- C The reactor produces energy to boil water and to produce steam.
- **D** Carbon dioxide is the major waste product from the reactor.

### 5. Nov/2021/Paper\_12/No.38


A radioactive sample contains an isotope that emits alpha particles.

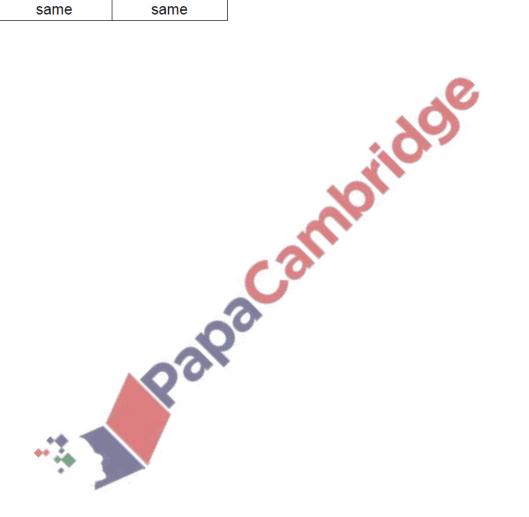
Which quantity stays constant?

- A the half-life of the isotope
- B the mass of the sample
- C the number of neutrons in the sample
- **D** the rate of decay of the isotope

## **6.** Nov/2021/Paper\_12/No.39

In the simple model of an atom, X orbits around Y.




### What are X and Y?

|   | Х        | Y        |
|---|----------|----------|
| Α | electron | nucleus  |
| В | neutron  | electron |
| С | nucleus  | proton   |
| D | proton   | neutron  |

## 7. Nov/2021/Paper\_12/No.40

How do the proton numbers (atomic numbers) and the nucleon numbers (mass numbers) of two different isotopes of the same element compare with each other?

|   | proton<br>number | nucleon<br>number |
|---|------------------|-------------------|
| Α | different        | different         |
| В | different        | same              |
| С | same             | different         |
| D | same             | same              |



| 8. | Nov | /2021 | /Paper | 21 | /No.10 |
|----|-----|-------|--------|----|--------|
|----|-----|-------|--------|----|--------|

The isotope yttrium-90  $\binom{90}{39}$ Y) is radioactive. It is a beta-particle emitter that decays to product Q. Product Q is stable.

(a) State one feature that is common to all isotopes of yttrium.

| [ | [1 | ] |
|---|----|---|
|---|----|---|

| Describe now a <b>neutral atom</b> of Q dillers from a <b>neutral atom</b> of ytthum-90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| To the state of th |  |

(c) A sample of yttrium-90 is placed close to a radiation detector in a laboratory. There are no other radioactive samples in the laboratory. A counter records the count rate.

Fig. 10.1 is a graph of the count rate plotted against time.

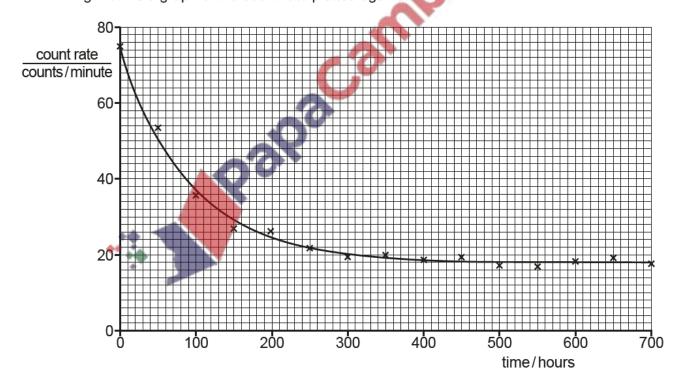



Fig. 10.1

Using Fig. 10.1, determine the average background count rate.

|     | (11)  | Suggest two different origins for the                                                          |                                                                                           |
|-----|-------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|     |       | 1                                                                                              |                                                                                           |
|     |       |                                                                                                | [2]                                                                                       |
|     | (iii) | Using Fig. 10.1, determine the half-l                                                          | ife of yttrium-90. Show how the answer is obtained.                                       |
|     |       |                                                                                                |                                                                                           |
|     |       |                                                                                                |                                                                                           |
|     |       |                                                                                                |                                                                                           |
|     |       |                                                                                                |                                                                                           |
|     |       |                                                                                                | 40                                                                                        |
|     |       |                                                                                                | half-life = [4]                                                                           |
|     | (iv)  | Many of the points plotted in Fig. 10                                                          | .1 do not lie on the best-fit line.                                                       |
|     |       | Explain why.                                                                                   |                                                                                           |
|     |       |                                                                                                |                                                                                           |
|     |       |                                                                                                |                                                                                           |
|     |       |                                                                                                | [2]                                                                                       |
| (d) |       | eam of beta-parti <mark>cles, travelli</mark> ng in a vales. One plate is negatively charged a | acuum, enters the region between two parallel, metal and the other is positively charged. |
|     | Fig.  | 10.2 shows the arrangement.                                                                    |                                                                                           |
|     |       |                                                                                                | + + + + + +                                                                               |
|     |       | beam of beta-particles                                                                         |                                                                                           |
|     |       | <del></del>                                                                                    |                                                                                           |
|     |       |                                                                                                |                                                                                           |
|     |       | Fia                                                                                            | . 10.2                                                                                    |
|     | On    | _                                                                                              | beta-particles as they travel between the two plates.                                     |
|     |       | ing. 10.2, draw the path taken by the                                                          | pota-particles as tricy traver between trie two plates.                                   |

On Fig. 10.2, draw the path taken by the beta-particles as they travel between the two plates.
[2]

[Total: 15]

| 9. |     |      | aper_22/No.6 X is radioactive. It decays by alpha-particle emission to a stable isotope.                                |
|----|-----|------|-------------------------------------------------------------------------------------------------------------------------|
|    | (a) | Stat | e how a nucleus of X changes when it emits an alpha-particle.                                                           |
|    |     |      |                                                                                                                         |
|    |     |      |                                                                                                                         |
|    |     |      | [2]                                                                                                                     |
|    | (b) | The  | re is a radiation detector in a laboratory where there are no radioactive samples.                                      |
|    |     | The  | detector is switched on and shows an average count rate of 22 counts/minute.                                            |
|    |     | (i)  | State why the radiation detector shows a count rate.                                                                    |
|    |     |      |                                                                                                                         |
|    |     |      | [1]                                                                                                                     |
|    |     | (ii) | A sample of isotope X is placed 2cm from the detector and the reading displayed is 8000 counts/minute.                  |
|    |     |      | The sample is moved a distance of 10 cm from the detector. The reading returns to an average value of 22 counts/minute. |
|    |     |      | Explain why the reading returns to the original value.                                                                  |

121

(c) An alpha-particle passes into a region where there is a magnetic field. In the magnetic field, a force acts on the alpha-particle so that it follows a circular path. Fig. 6.1 shows that the particle passes through point J.

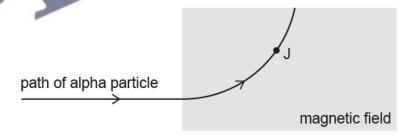



Fig. 6.1

(i) On Fig. 6.1, draw an arrow through point J to show the direction of the force on the alpha-particle at J. [1]

| (ii)  | Determ<br>this dire | nine the direction of the magnetic field and mark a tick in the box $(\checkmark)$ that indicates ection. |
|-------|---------------------|-----------------------------------------------------------------------------------------------------------|
|       |                     | to the left                                                                                               |
|       |                     | to the right                                                                                              |
|       |                     | towards the top of the page                                                                               |
|       |                     | towards the bottom of the page                                                                            |
|       |                     | into the page                                                                                             |
|       |                     | out of the page [1]                                                                                       |
| /:::\ | Cymlain             |                                                                                                           |
| (iii) | -                   | whether this force does work on the alpha-particle as the particle moves along cular path.                |
|       |                     |                                                                                                           |
|       |                     | [2]                                                                                                       |
|       |                     | [Total: 9]                                                                                                |
|       |                     |                                                                                                           |

# 10. June/2021/Paper\_11/No.37

Which statement about nuclear fusion is correct?

- A Nuclear fusion occurs at low temperatures.
- B Nuclear fusion occurs only between heavy nuclei.
- C Nuclear fusion occurs in the formation of many stars.
- D Nuclear fusion powers most electricity-generating stations.

# 11. June/2021/Paper\_11/No.38

In one radioactive decay, radium-226 decays to radon-222 as shown.

$$^{226}_{88}$$
Ra  $\rightarrow ^{222}_{86}$ Rn

Which particles are also produced?

- both an alpha-particle and a beta-particle
- В an alpha-particle only
- a beta-particle only
- D a neutron

## 12. June/2021/Paper\_11/No.39

e the The count rate from a radioactive source falls from 4000 counts per minute to 500 counts per minute in 72 minutes.

What is the half-life of the source?

- 8 minutes
- В 9 minutes
- С 18 minutes
- 24 minutes

## 13. June/2021/Paper\_11/No.40

Which particles are found inside the nucleus of an atom?

- Α neutrons and electrons
- electrons and protons
- С neutrons only
- D neutrons and protons

# 14. June/2021/Paper\_12/No.39

What does an alpha-particle consist of?

- two electrons and four neutrons only
- two protons and two neutrons only В
- **C** two protons and four neutrons only
- **D** two protons, two electrons and two neutrons

### **15.** June/2021/Paper\_12/No.40

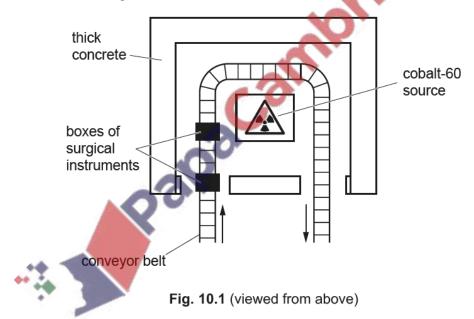
The count rate from a radioactive source falls from 4000 counts per minute to 500 counts per Palpacambildos minute in 72 minutes.

What is the half-life of the source?

- 8 minutes
- В 9 minutes
- С 18 minutes
- D 24 minutes

Table 10.1 contains details of the nature and some properties of alpha, beta and gamma emissions.

**Table 10.1** 


|                   | alpha                    | beta                         | gamma |
|-------------------|--------------------------|------------------------------|-------|
| nature            | 2 protons and 2 neutrons |                              |       |
| charge            |                          | negative                     |       |
| penetrating power |                          | stopped by 5 mm of aluminium |       |

(a) Complete Table 10.1 by filling in the missing details.

[6]

**(b)** Surgical instruments in sealed plastic bags are placed in thin plastic boxes. A conveyor belt takes the boxes close to a cobalt-60 source which sterilises the instruments.

This is shown in Fig. 10.1.



The cobalt-60 source is a radioactive isotope of cobalt that emits gamma-radiation.

(i) Describe what is meant by the term isotope.

......[2]

(ii) Suggest a property of gamma-radiation that enables it to sterilise the instruments in the bags in the boxes.

.....[1]

|     | (iii) | State why a source emitting only alpha-radiation cannot be used in this way.                          |
|-----|-------|-------------------------------------------------------------------------------------------------------|
|     |       | [1]                                                                                                   |
|     | (iv)  | The half-life of cobalt-60 is 5.3 years.                                                              |
|     |       | Explain why a source with a half-life of 5.3 minutes is unsuitable for use in this application.       |
|     |       | [1]                                                                                                   |
| (c) |       | ger and Marsden performed an experiment in which alpha-particles were fired at a thin of gold.        |
|     | (i)   | path of alpha-particle  nucleus of gold atom  Fig. 10.2  Explain why the alpha-particle is deflected. |
|     |       | [2]                                                                                                   |
|     | (ii)  | In the experiment, most of the alpha-particles pass straight through the foil without deflection.     |
|     |       | Explain, using ideas about the structure of the atom, why this happens.                               |
|     |       |                                                                                                       |
|     |       | [2]                                                                                                   |
|     |       | [Total: 15]                                                                                           |

# 17. June/2021/Paper\_22/No.11

A highly radioactive source that emits beta-particles is placed a few centimetres away from a detector, as shown in Fig. 11.1.

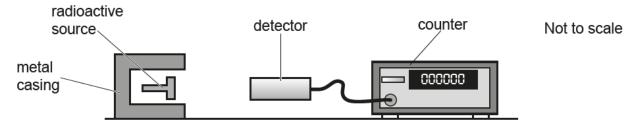



Fig. 11.1

| (a) | Stat | te the name of the particle which has the same mass and charge as a beta-particle.                          |
|-----|------|-------------------------------------------------------------------------------------------------------------|
|     |      | [1                                                                                                          |
| (b) | Stat | e and explain why the metal casing in Fig. 11.1 is used.                                                    |
|     |      |                                                                                                             |
| (c) |      | te and explain what happens to the number of particles detected in a minute as the oactive source is moved: |
|     | (i)  | a few centimetres further away from the source                                                              |
|     |      | .600                                                                                                        |
|     |      | [2                                                                                                          |
|     | (ii) | more than a metre away from the source.                                                                     |
|     |      |                                                                                                             |
|     |      |                                                                                                             |

(d) A nucleus of strontium-90 (Sr-90) decays by beta emission to a nucleus of yttrium (Y).
Complete the decay equation for this decay.

$$^{90}_{38} \text{Sr} \rightarrow ^{\cdots}_{-1} \text{Y} + ^{\cdots}_{-1} \beta$$

[3]

(e) Nuclear fusion and nuclear fission both release large amounts of energy.

(ii)

| (i) | Describe how the process of nuclear fusion differs from the process of nuclear fission. |
|-----|-----------------------------------------------------------------------------------------|
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |

Describe the conditions needed for nuclear fusion to take place.

[2]

[Total: 15]