Nuclear physics - 2022 June O Level 5054

1. June/2022/Paper_11/No.40

In the Geiger-Marsden experiment, alpha-particles are fired at a thin gold sheet.

Most alpha-particles pass straight through the thin gold sheet. Rapacantonidose

A few are deflected.

What can be deduced from this experiment?

- The nucleus is very small.
- B The nucleus has no charge.
- Electrons surround the nucleus.
- **D** Electrons have a negative charge.

Table 9.1

nuclide	radiation emitted	half-life
hydrogen-2	none	_
hydrogen-3	beta	12 year
francium-223	beta	22 min
iridium-192	gamma	74 day
phosphorus-32	beta	14 day
radon-222	alpha	4 day
technetium-99	gamma	6 hour

(a)	(i)	Hydrogen-2 and hydrogen-3 are isotopes of the element hydrogen.	
		Define the term isotope.	
			2
	(ii)	The equation for the decay of phosphorus-32 (P-32) as it emits a beta particle is:	

 $^{32}_{15}P \rightarrow ^{0}_{-1}\beta + ^{32}_{16}Q$

Explain whether the equation shows that Q is another isotope of phosphorus. Q is not the chemical symbol for the atom.

[1]

stru	ectures. It is injected into a patient and the radiation emitted is detected outside the body.
(i)	State which source in Table 9.1 is most suitable for this type of medical use.
	[1]
(ii)	Explain two reasons for your choice
	103

(b) One of the sources in Table 9.1 is used in a medical procedure to detect unusual bone

(c)	Rad	don gas is one natural source of background radiation.	
	Son	me causes of background radiation are man-made, for example, X-rays.	
	(i)	State one other natural source of background radiation.	
			[1]
	(ii)	State one other man-made source of background radiation.	
			[1]
	(iii)	State one harmful effect of background radiation.	
			[1]
(d)	One	e fusion reaction that occurs is:	
		$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He +$	
	(i)	Complete the equation to show the missing proton and nucleon numbers.	[1]
	(ii)	Deduce the name of particle X.	
			[1]
	(iii)	Suggest where this fusion reaction takes place.	
	,		[1 ⁻
(e)	Cor	mpare the properties of alpha-particles and beta-particles in terms of their:	. [.,
(0)	00.	ability to penetrate through materials	
		ionising effects	
		deflection in a magnetic field.	
	•••••		
	••••		
			[3]

[Total: 15]

3. June/2022/Paper_22/No.9

Thorium-229 is a radioactive isotope used in several medical applications that involve alpha-particles and beta-particles.

(a) During ionisation, a helium atom becomes a helium ion.

Fig. 9.1 shows a diagram of a helium (He⁺) ion.

Fig. 9.1

(i)	State how the structure of a helium atom differs from the structure of the helium ion.
	[1]
(ii)	State how the structure of an alpha-particle differs from the structure of the helium ion.
	[1]
	229 7

(iii) A nucleus of thorium-229 ($^{229}_{90}$ Th) decays by alpha (α) emission to a nucleus of element X.

$$_{90}^{229}\text{Th} \rightarrow X + _{2}^{4}\alpha$$

The nucleus of X then decays to a nucleus of Y by beta (β) emission.

$$X \rightarrow Y + {0 \atop -1}\beta$$

Complete Table 9.1 to show the number of protons and neutrons in a nucleus of X and in a nucleus of Y.

Table 9.1

nucleus	number of protons	number of neutrons
X		
Υ		

[4]

		scribe the apparatus and the procedure used to show that a sample emits both alphaticles and beta-particles.
	You	may draw a diagram of the apparatus, if you wish.
	•••••	
	•••••	
		[4]
(c)	(i)	State what is meant by the half-life of thorium-229.
		[2]
	(ii)	A sample of pure thorium-229 contains 4.0×10^{14} atoms. After 22 000 years, the number of atoms of thorium-229 in the sample is 5.0×10^{13} .
		Determine the half-life of thorium-229.
		Show your working.
		half-life =[3]
		[Total: 15]

(b) Experiments can show that a sample of a material is radioactive.