Cambridge O Level

STATISTICS

4040/23
Paper 2
October/November 2023
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier, asterisked, mark in the scheme.

The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only.

Abbreviations

AG	answer given on question paper
awrt	answer which rounds to
cao	correct answer only
dep	dependent
ft	follow through after error
oe	or equivalent
SC	special case
soi	seen or implied
www	without wrong working

Question	Answer	Marks	Partial Marks
$1(\mathrm{a})$	$(x-50) / 12=(41-60.5) / 7.8$ oe		M1
	20		A1
$1(\mathrm{~b})$	$(40-37.2) / y=(54-50) / 12$ oe	$\mathbf{2}$	M1
	8.4		A1
$1(\mathrm{c})$	$(x-60.5) / 7.8=(x-50) / 12$ oe	$\mathbf{2}$	M1
	80		A1

Question	Answer	Marks	Partial Marks
2(a)	2/5 oe	1	B1
2(b)	$\begin{aligned} & \text { Use of } \mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B) \\ & 3 / 5 \times 1 / 2 \end{aligned}$	2	M1
	3/10 oe		A1
2(c)	$\begin{aligned} & \text { Use of } \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\ & 3 / 5+1 / 2-{ }^{\prime} 3 / 10 \prime \end{aligned}$	2	M1
	4/5 oe		A1
2(d)	A and A^{\prime} because they cannot both happen together	1	B1

Question	Answer	Marks	Partial Marks
3(a)	0187-0127 (=60)	2	M1
	1200/60 $=20$		A1
3(b)(i)	$36 / 84 \times 7$ or $12 / 84 \times 7$	2	M1
	3, 3 and 1		A1
3(b)(ii)	$\begin{array}{lllllll}79 & 04 & 41 & 23 & 35 & 58 & 60\end{array}$ (B2 for 1 error/omission) (B1 for 2 errors/omissions)	3	B3

Question	Answer	Marks	Partial Marks
4 4(a)	Red foxes have generally smaller paw lengths oe or Coyotes have generally larger paw prints oe	$\mathbf{2}$	B1
	Red foxes have less varied paw lengths oe or Coyotes have more varied paw lengths oe	B1	
4 (b)	Frequency polygons can be displayed together/allow easy comparison oe	$\mathbf{1}$	B1
4 (c)	Correct and none of the red foxes paw prints were between 7 and 8 cm or none were more than 7 cm or all were less than 7 cm oe	$\mathbf{1}$	B1

Question	Answer	Marks	Partial Marks
5(a)	Fig. 1: The vertical axis does not start at 0	2	B1
	Fig. 2: The scale is not linear		B1
5(b)	\$8300	1	B1
5(c)	A box and whisker diagram with a linear scale	4	M1
	Linear scale from at least 7[000] to 12[000] with labelling including 'salary', '\$', and 'thousands' if appropriate		A1
	Lowest $=7100$ $L Q=7800$ Median = '8300' $U Q=9300$ Highest $=11900$ (B1ft for 3 or 4 correct)		B2ft

Question	Answer	Marks	Partial Marks
$6(\mathrm{a})$	Correct method: $[0 \times 6]+1 \times 9+2 \times 10+3 \times 5$		M1
	44		A1

Question	Answer	Marks	Partial Marks
$6(\mathrm{~b})$	$20 / 44 \times 1 / 43+15 / 44 \times 2 / 43$ 20 and $15(\times 2)$ in each of two numerators	$\mathbf{5}$	M1
	$20 / 44$ or $15 / 44$ in a product		M1
	$n(n-1)$ in at least one denominator	M1	
	44×43 in all denominators	M1	
	$25 / 946$ oe	A1	

Question	Answer	Marks	Partial Marks
7(a)	Continuous quantitative	2	B1 B1
7(b)	90th value	5	B1
	$55+$		M1
	' 24 '/42 $\times 5$		M1
	or		
	$60-$		(M1
	' 18 '/42 $\times 5$		M1)
	or		
	$\left(55 \times 18^{\prime}+60 \times 24^{\prime}\right) / 42$		(M2)
	'57.86'-50.26		M1
	$\mathrm{IQR}=7.6$		A1
7(c)	Mean likely to be less than median due to some extreme low times oe	1	B1

Question	Answer	Marks	Partial Marks
7(d)	$8 / 10 \times 15$ [=12] oe	3	M1
	' $8 / 10 \times \times 15+13$		M1
	or		
	$2 / 10 \times 15[=3]$ oe		(M1
	$(15-2 / 10 \times 15)+13$		M1)
	or		
	$(13 \times 2+28 \times 8) / 10$		(M2)
	25		A1
7(e)	Median = 51.71 and IQR = '7.6'	1	B1ft
7(f)	$48+2.5(=50.5)$ or $50-2.5(=47.5)$	4	M1
	0.5/5 $\times 38+13+15(=31.8)$ oe		M1
	'0.5/5' $\times 38+13+15-25{ }^{\prime}(=6.8)$		M1
	7		A1

Question	Answer	Marks	Partial Marks
8(a)	[Maintenance $=$] $40 \times 24000 \div 1000(=960)$	3	M1
	[Fuel $=1.25 \times 7.2 \times 24000 \div 100(=2160)$		M1
	720: 960: 2160 leading to $3: 4$: 9 AG or $720 / 240=3,960 / 240=4,2160 / 240=9$ leading to $3: 4: 9$ AG		A1
8(b)	Appropriate linear scale labelled \% and key or labelled bars	3	B1
	$3 /(3+4+9) \times 100$ or $4 /(3+4+9) \times 100$ or $9 /(3+4+9) \times 100$ oe		M1
	Bars all correct: T\&I 18.75; Maintenance 25; Fuel 56.25.		A1
8(c)	Decreased because weight for fuel is over 50% and decrease in fuel (8%) is greater than the two increases/greater than the combined increase (B1 for decreased because weight for fuel is over 50% or for decreased because decrease in fuel (8%) is greater than the two increases/greater than the combined increase)	2	B2

Question	Answer	Marks	Partial Marks
8(d)	2018: all 100	4	B1
	2022: Tax and insurance $=84$		B1
	$36 / 40$ [$\times 100$] oe or 1.45/1.25 [$\times 100$] oe		M1
	Maintenance $=90$ and Fuel $=116$		A1
8(e)	' 84 ' $\times 3+90$ ' $\times 4+116$ ¢ 9	3	M1*
	$\div(3+4+9)$ dep		M1dep
	103.5		A1
8(f)	Fuel consumption of new car might be different/distance travelled may have changed/amount of fuel may have changed oe	1	B1

Question	Answer	Marks	Partial Marks
9(a)	Correct plots		B1
	Joined with straight line segments	B1	
9(b)	An explanation suggesting that she has not considered all the data/she has only considered the last three data points	$\mathbf{1}$	B1

Question	Answer				Marks	Partial Marks
9(c)	Time	Reading	3-pt total	$3-\mathrm{pt} \mathrm{moving} \mathrm{average}$	7	
	1	103				
	2	70	238	79.3		
	3	65	233	77.7		
	4	98	231	77		
	5	68	228	76		
	6	62	228	76		
	7	98	225	75		
	8	65	222	74		
	9	59	219	73		
	10	95	216	72		
	11	62	213	71		
	12	56				
	A moving average calculation (even if not 3-pt)					M1
	A 3-pt or 6-pt total or 3-pt or 6-pt moving average calculation					M1
	At least 4 correct 3-pt moving average values					A1
	All 10 correct moving average values					A1
	Correct plots vertically for 3-pt or 6-pt moving average values					B1
	10 correct plots horizontally					B1
	An appropriate trend line					B1ft

Question	Answer	Marks	Partial Marks
9(d)	(\pm) at least one appropriate difference at $(t=1), t=4, t=7$, and $t=10$ Using the table, these appropriate differences are: $\begin{aligned} & t=4 \text {, difference }=(\pm)\left(98-77^{\prime}\right)=(\pm) 21 \\ & t=7, \text { difference }=(\pm)\left(98-{ }^{\prime} 75^{\prime}\right)=(\pm) 23 \\ & t=10 \text {, difference }=(\pm)\left(95-2^{\prime}\right)=(\pm) 23 \end{aligned}$ Using the graph, these appropriate differences are: $t=1$, difference $\approx(\pm)\left(103-‘ 80^{\prime}\right)=(\pm) 23$ $t=4$, difference $\approx(\pm)\left(98-‘ 77^{\prime}\right)=(\pm) 21$ $t=7$, difference $\approx(\pm)\left(98-‘ 75^{\prime}\right)=(\pm) 23$ $t=10$, difference $\approx(\pm)\left(95-72^{\prime}\right)=(\pm) 23$	5	M1
	All 3 appropriate differences above from table (and no others) or All 4 appropriate differences above from graph (and no others)		M1
	Sum of (\pm) their differences $\div n$, where $n=3$ or 4 . ('21' + '23' + '23') $\div 3$ [= 22.3] or $\left(' 23^{\prime}+' 21^{\prime}+{ }^{\prime} 23^{\prime}+{ }^{\prime} 23^{\prime}\right) \div 4[=22.5]$		M1
	Their trend line reading at $\mathrm{T}=13+$ their seasonal component '70' + '22.3'		M1
	92		A1

Question	Answer	Marks	Partial Marks
10(a)(i)	[$P($ not 4$)=] 3 / 4$	2	M1
	$3 / 4 \times 3 / 4 \times 3 / 4=27 / 64$ oe		A1
10(a)(ii)	$3 / 4 \times 3 / 4 \times 1 / 4$	2	M1
	9/64 oe		A1
10(b)(i)	'27/64' + '9/64' = 9/16 oe	1	B1ft
10(b)(ii)	$1 / 4 \times 1 / 4 \times 1 / 4=1 / 64$ oe	1	B1
10(b)(iii)	434 and 443 soi	2	M1
	$1 / 4 \times 1 / 4 \times 1 / 4 \times 2=1 / 32$ oe		A1

Question	Answer					Marks	Partial Marks
10(c)	[Prize]	0	1	2	3	3	
	[Probability]	36/64	25/64	2/64	1/64		
	Table with prizes of $0,1,2$ and 3 and probabilities						B1
	Four probabilities that sum to 1 or correct $\mathrm{P}(1)$						M1
	Fully correct probabilities						A1
10(d)						2	M1
	\$0.50						A1
10(e)						2	M1
	\$35						A1
10(f)	The probability of ending up on square 8 is very small, so a small increase in the amount charged results in a large increase of that prize					1	B1

