MARK SCHEME for the May/June 2014 series

9791 CHEMISTRY

9791/04
Paper 4 (Practical), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	04

Skill	Total marks	Breakdown of marks	Qu. 1	Qu. 2	Qu. 3	
Manipulation, measurement and observation	15 marks	Successful collection of data and observations	8 marks	0	1	7
		Quality of measurements or observations	4 marks	2	2	0
	Decisions relating to measurements or observations	3 marks	2	0	1	
Presentation of data and observations	6 marks	Recording data and observations	2 marks	2	0	0
		Display of calculations and reasoning	2 marks	2	0	0
	Data layout	2 marks	1	1	0	
Analysis, conclusions and evaluation	19 marks	Interpretation of data or observations and identifying sources of error	11 marks	6	5	0
	Drawing conclusions	7 marks	0	3	4	
		Suggesting improvements	1 mark	1	0	0

MMO = manipulation, measurement and observation collection = successful collection of data and observations quality $=$ quality of measurements or observations decisions $=$ decisions relating to measurements or observations
PDO = presentation of data and observations recording $=$ recording data and observations display = display of calculations and reasoning layout = data layout
ACE = analysis, conclusions and evaluation interpretation = interpretation of data or observations and identifying sources of error conclusions = drawing conclusions improvements = suggesting improvements

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	04

\begin{tabular}{|c|c|c|c|c|}
\hline \& Sections \& Learning outcomes \& Indicative material \& Mark \\
\hline 1 (a) \& \begin{tabular}{l}
PDO layout \\
ACE interpretation \\
MMO quality
\end{tabular} \& \begin{tabular}{l}
Use the appropriate presentation medium to produce a clear presentation of the data \\
Calculate other quantities from data \\
Make accurate and consistent measurements and observations
\end{tabular} \& \begin{tabular}{l}
I All balance readings clearly shown in a single table including mass of FA 1 and the mass of water. \\
II Calculates correctly the mass of FA 1 and the mass of water. \\
III + IV Ratio of corrected mass water: corrected initial mass compared to supervisor value. Award both marks for \(\delta \leq 0.010\). Award 1 mark for \(0.010<\delta \leq 0.020\).
\end{tabular} \& \begin{tabular}{l}
[1] \\
[1] \\
[2]
\end{tabular} \\
\hline (b) \& \begin{tabular}{l}
ACE interpretation \\
ACE interpretation \\
ACE interpretation
\end{tabular} \& \begin{tabular}{l}
Calculate other quantities from data \\
Calculate other quantities from data \\
Calculate other quantities from data
\end{tabular} \& \begin{tabular}{l}
I In (ii), calculates correctly moles of \(\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\) from
\[
\frac{[\text { mass of water lost] }}{18} \times 0.5
\] \\
II In (ii) use of 244 for RFM of \(\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\). \\
III In (ii) calculates correctly \% by mass of \(\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\) from \(\frac{\text { [mol of salt } \times 244.3 \text {] }}{\text { mass }} \times 100\) mass of salt heated
\end{tabular} \& \begin{tabular}{l}
[1] \\
[1] \\
[1]
\end{tabular} \\
\hline (c) \& \begin{tabular}{l}
MMO collection \\
MMO decision \\
ACE conclusion
\end{tabular} \& \begin{tabular}{l}
Use their apparatus to collect an appropriate quantity of data or observations, including differences in colour, solubility or quantity of materials \\
Identifies the nature of confirmatory tests \\
Draw conclusion from interpretation of observations
\end{tabular} \& \begin{tabular}{l}
Salt dissolves with effervescence AND limewater turns milky. \\
Selects limewater (allow other reagents that test for gases). \\
Carbonate or \(\mathrm{CO}_{3}{ }^{2-}\)
\end{tabular} \& [1]

$[1]$
[1]

\hline
\end{tabular}

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	04

(d)	ACE conclusion	Draw conclusion from interpretation of observations	BaCO_{3} or second salt is thermally stable/does not decompose on heating/is anhydrous (not a hydrate).	$[1]$
ACE conclusion	Draw conclusion from interpretation of observations	All the mass lost is from water OR no other gases are evolved OR mass loss is only because of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$.	$[1]$	

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	04

	Sections	Learning outcomes	Indicative material	Mark
2 (a)	PDO layout	Use the appropriate presentation medium to produce a clear presentation of the data	I Tabulates initial burette reading, final burette readings and volume of FA 3 added.	[1]
	PDO recording	Use column headings that include both the quantity and the unit and that conform to accepted scientific conventions	II Appropriate headings and units for data given for titration results. If units are not included in the heading then every entry in the table must have a correct unit.	[1]
	PDO recording	Record raw readings of a quantity to the same degree of precision	III All accurate burette readings and volumes of FA 3 added are given to nearest 0.05 cm^{3}. (Treat all titres as accurate unless labelled otherwise.)	[1]
	MMO decision	Identify where repeated readings are appropriate	IV Two or more uncorrected titres within $0.20 \mathrm{~cm}^{3}$.	[1]
	MMO quality	Make accurate and consistent measurements and observations	V + VI Examiner checks subtractions and selects best titres to calculate mean (ignoring any labelled rough). Examiner compares corrected mean titre with supervisor value.	[2]
			Award 2 marks if difference to supervisor is $0.20 \mathrm{~cm}^{3}$ or less; award 1 mark if difference to supervisor is between 0.20 and $0.30 \mathrm{~cm}^{3}$.	
(b)	ACE interpretation	Calculate other quantities from data	Calculates correct mean from correct titre values within $0.2 \mathrm{~cm}^{3}$. Must use more than one value. If no calculation shown then titres must be indicated (e.g. with a tick) in the table.	[1]

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	04

	Sections	Learning outcomes	Indicative material	Mark
(c)	ACE interpretation	Calculate other quantities from data	I $\quad \ln (\mathbf{i}) \frac{(b)}{1000} \times 0.100$ AND in (ii) ans to [ans(i) \times 10]	[1]
	ACE interpretation	Calculate other quantities from data	II In part (iii) $\frac{250}{1000} \times 0.200=0.0500$ AND ans to [0.0500 - ans to (ii)]	[1]
	ACE interpretation	Calculate other quantities from data	III In part (iv) ans to [ans (iii) $\times 53.5$]	[1]
	ACE interpretation	Calculate other quantities from data	$\begin{array}{\|r} \text { IV } \begin{array}{l} \text { In part (iv) } \\ \text { ans to } \\ \text { [ans to }(\text { iii }) \times 53.5] \\ 1.40 \end{array} 100 \end{array}$	[1]
	PDO display	Use correct number of significant figures for calculated quantites	V All final answers to parts (i) to (iii) given to 3 or 4 sig fig. (minimum 2 attempted answers)	[1]
(d)	ACE interpretation	Estimate, quantitatively, the uncertainty in quantitative measurements	Evidence of doubling of individual burette readings: ± 0.10 as $2 \times$ ± 0.05	[1]
	ACE interpretation	Express such uncertainties as an actual or percentage error	$\pm 0.10 /$ titre $\times 100$ AND $0.06 / 25.00 \times 100=0.24 \%$	[1]

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	04

\begin{tabular}{|c|c|c|c|c|}
\hline (e) \& \begin{tabular}{l}
ACE improvement \\
PDO \\
display
\end{tabular} \& \begin{tabular}{l}
Suggest modifications to an experimental arrangement that will improve the accuracy of the experiment \\
Show their working in calculations and the key steps in their reasoning
\end{tabular} \& \begin{tabular}{l}
Identifies the problem of evaporation in the first method. \\
In method 1 the sodium hydroxide solution is concentrated by evaporation. Thus it appears that there was less \(\mathrm{NH}_{4} \mathrm{Cl}\) present in the sample and so the percentage is smaller.
\end{tabular} \& [1]

[1]

\hline
\end{tabular}

Page 8	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	04

FA 4 is $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$, FA 5 is glucose solution, FA 6 is ethanol, FA 7 is water (tertiary alcohol)

	Sections	Learning outcomes	Indicative material	Mark
3 (a) (i)	MMO collection	Use their apparatus to collect an appropriate quantity of data or observations, including differences in colour, solubility or quantity of materials	I White ppt with both NaOH and NH_{3}. II White ppt soluble in excess NaOH and insoluble in excess NH_{3}	[1] [1]
(ii)	ACE conclusion	Draws conclusions from interpretation of observations, data and calculated values	III $\mathrm{Al}{ }^{3+}$ or Pb^{2+}	[1]
(iii)	MMO decision MMO collection	Identifies the nature of confirmatory tests Use their apparatus to collect an appropriate quantity of data or observations, including differences in colour, solubility or quantity of materials	IV Selects HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or other appropriate reagent. V Appropriate observation for selected reagent.	[1] [1]
(iv)	ACE conclusion	Draws conclusions from interpretation of observations, data and calculated values	VI Al ${ }^{3+}$ (Must follow from correct test and observations in (iii).)	[1]
(b) (i)	MMO collection	Use their apparatus to collect an appropriate quantity of data or observations, including differences in colour, solubility or quantity of materials	I Silver mirror with Tollens' and FA 5. II No reaction with Tollens' and FA 6 or FA 7.	[1] [1]
(ii)	MMO collection	Use their apparatus to collect an appropriate quantity of data or observations, including differences in colour, solubility or quantity of materials	(Ignore observations for FA 5.) III Goes colourless with acidified manganate(VII) and FA 6. IV No reaction with acidified manganate(VII) and FA 7.	[1] [1]

Page 9	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9791	04

(iii)	ACE conclusion	Draws conclusions from interpretation of observations, data and calculated values	V	FA 6 is the primary alcohol. FA 7 is the tertiary alcohol. FA 5 is the solution of glucose. If candidate had a positive Tollens' test in (b)(i) for FA 6 then allow: FA 5 is the primary alcohol, FA 7 is the tertiary alcohol, FA 6 is the solution of glucose.	[1]
(iv)	ACE conclusion	Draws conclusions from interpretation of observations, data and calculated values	VI	Correct comparisons for given observations with those for aldehyde i.e. silver mirror for Tollens' and reaction with manganate(VII)	[1]

