Cambridge International Examinations

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

CHEMISTRY (PRINCIPAL)

Paper 4 Practical

May/June 2016
2 hours

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions
Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 9 printed pages and $\mathbf{3}$ blank pages.

1 FA 1 is an ore that contains magnesium carbonate.
You will determine the percentage by mass of magnesium carbonate in FA 1 by measuring the mass loss when the ore is reacted with an excess of hydrochloric acid.

$$
\mathrm{MgCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

FA 2 is hydrochloric acid, HCl .
(a) Method

Before starting any practical work, read through all the instructions and prepare a

 table for your results in the space provided.1. Use the measuring cylinder to transfer $50 \mathrm{~cm}^{3}$ of FA 2 into a conical flask.
2. Weigh the conical flask containing the acid and record the mass.
3. Weigh the stoppered tube containing FA 1 and record the mass.
4. Slowly and carefully, to avoid acid spray, add all the sample of FA 1 a little at a time to the acid in the conical flask. Swirl the flask after each addition until there is no further visible reaction.
5. Reweigh the conical flask and its contents and record the mass.
6. Reweigh the stoppered tube containing any residual FA 1 and record the mass.
7. Calculate the mass of FA 1 added to the acid and record this value.
8. Calculate the mass of carbon dioxide given off and record this value.

I	
II	
III	
IV	
V	
VI	

[6]
(b) Calculations

You must show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the amount, in mol, of carbon dioxide given off when the magnesium carbonate reacted with FA 2.
(ii) Calculate the mass of the magnesium carbonate in the original sample of FA 1.

$$
\text { mass of } \mathrm{MgCO}_{3}=\text {... } \mathrm{g}
$$

(iii) Calculate the percentage by mass of magnesium carbonate in FA 1.

$$
\text { percentage by mass of } \mathrm{MgCO}_{3}=\text {.. \% }
$$

(iv) In carrying out this analysis, what assumption have you had to make about the other components in the ore?
\qquad
\qquad
\qquad
(c) (i) A student decided to repeat the experiment but using the same volume of more dilute hydrochloric acid. The student reasoned that this would reduce acid spray and so make the percentage by mass more accurate.
When the experiment was carried out, however, the percentage by mass was found to be lower than the true value. Suggest why this was the case.
\qquad
\qquad
\qquad
(ii) Another student claimed that a more accurate percentage by mass could be obtained by using the first method but measuring FA 2 with a burette rather than a measuring cylinder.
Discuss whether you agree with the student.
\qquad
\qquad
\qquad

2 The ore FA 1 also contains magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$. In this experiment you will determine the percentage by mass of magnesium hydroxide in the ore.

Solution FA 3 was prepared as follows. An 18.0 g sample of the ore was dissolved in $250.0 \mathrm{~cm}^{3}$ of hydrochloric acid with a concentration of $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ and the resulting solution made up to $1.00 \mathrm{dm}^{3}$ using distilled water.

$$
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

In this experiment you will determine the amount of hydrochloric acid that remains in the solution by a titration using aqueous sodium hydroxide.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The following reagents are provided.
FA $40.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH
methyl orange indicator
(a) Method

Before starting any practical work, read through all the instructions and prepare a suitable table for your results in the space provided.

1. Fill the burette with FA 3.
2. Use a pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 4 into a clean conical flask.
3. Add 5 drops of methyl orange indicator to the conical flask.
4. Titrate the solution in the flask with FA 3.
5. Repeat the titration as many times as you feel are necessary in order to obtain consistent results.
6. Record your results in a suitable form in the space below.
(b) From your titration results, obtain a volume of FA 3 to be used in the following calculations. Show clearly how you obtained this value.
\qquad cm^{3} of FA 3 for neutralisation.

(c) You must show your working and appropriate significant figures in the final

 answer to each step of your calculations.(i) Calculate the amount, in mol, of sodium hydroxide present in $25.0 \mathrm{~cm}^{3}$ of FA 4.
\qquad mol
(ii) Calculate the amount, in mol, of hydrochloric acid present in the volume of FA 3 obtained in (b).
\qquad mol
(iii) Use your answer to (c)(ii) to calculate the amount, in mol, of hydrochloric acid that was present in $1.00 \mathrm{dm}^{3}$ of FA 3.
\qquad mol
(iv) FA 3 was prepared using $250.0 \mathrm{~cm}^{3}$ of hydrochloric acid with a concentration of $2.00 \mathrm{moldm}^{-3}$.

Calculate the amount, in mol, of hydrochloric acid used to prepare FA 3.
\qquad
(v) Use the percentage by mass of MgCO_{3} calculated in $\mathbf{1 (b)}$ (iii) to determine the mass of MgCO_{3} in 18.0 g of FA 1.

If your percentage by mass of MgCO_{3} calculated in $\mathbf{1 (b)}$ (iii) was greater than 90% then use a value of 81%. Do not assume that this is the correct value.
(vi) Calculate the amount, in mol, of hydrochloric acid that would react with the mass of MgCO_{3} calculated in (c)(v).
mol
(vii) Use your answers to (c)(iii), (iv) and (vi) to calculate the amount, in mol, of hydrochloric acid that reacted with the magnesium hydroxide present in 18.0 g of FA 1.
mol
(viii) Calculate the percentage by mass of magnesium hydroxide in FA 1.

BLANK PAGE

3 (a) FA 5 and FA 6 each contain an anion from those listed in the Qualitative Analysis Notes. You will identify the anion present in each salt.

Carry out the following tests and record your observations.

test	observations
(i) To approximately 1 cm depth of FA 5 in a test-tube, add approximately 1 cm depth of dilute sulfuric acid.	
As soon as you have made your observations rinse out the test-tube.	
(ii) To approximately 1 cm depth of FA 5 in a test-tube, add a few drops of acidified aqueous potassium manganate(VII).	
As soon as you have made your observations rinse out the test-tube.	
(iii) To approximately 1 cm depth of FA 5 in a test-tube, add approximately 1 cm depth of FA 6, then,	
add one drop of dilute sulfuric acid, then,	
add a few drops of starch solution.	
As soon as you have made your observations rinse out the test-tube.	

(iv) Carry out a further test to support the identification of the anion in FA 5. Record the reagents used and your observations.

test	observations

(v) Carry out a further test to confirm the identity of the anion in FA 6. Record the reagents used and your observations.

test	observations

(vi) Identify the two anions.

The anion in FA 5 is \qquad
The anion in FA 6 is \qquad
(b) FA 7 contains a cation from those listed in the Qualitative Analysis Notes. You will identify the cation present.

Carry out the following tests and record your observations.

test	
(i) To approximately 1 cm depth of FA 7 in a test-tube, add aqueous ammonia.	

(iii) Identify the cation.

The cation in FA 7 is \qquad
(iv) Suggest an explanation for the observations you made in (b)(ii).
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

