Cambridge International Examinations

Cambridge Pre-U Certificate

CHEMISTRY

Paper 3 Part B Written
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question	Answer	Marks
1(a)(i)	Minimum of two correct half-life calculations, ca. 1100 s (1) Constant half-life so first order (1)	2
1(a)(ii)	Rate $=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$	1
1(a)(iii)	Values from graph used in $\ln \left(\mathrm{C}_{0} / \mathrm{C}_{\mathrm{t}}\right)=k t$ e.g. $\ln (2.35 / 0.5)=k \times 2500$ (1) Rearrange for k e.g. $k=\{\ln (2.35 / 0.5)\} / 2500=1.548 / 2500(1)$ Correct answer with units $=6.190 \times 10^{-4} \mathrm{~s}^{-1}(1)$	3
1(a)(iv)	Slowest step (in the mechanism)	1
1(a)(v)	Adds up all 3 steps and show that they cancel to the overall equation	1
1(b)(i)	1st order	1
1(b)(ii)	2nd order	1
1(b)(iii)	Working using any other set of data. e.g. using experiment $3=9.22 \times 10^{-7} \times(5 / 3)^{2}(1)$ $=2.561 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)(1)$	2
1(b)(iv)	Rate $=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}$	1
1(b)(v)	$\begin{align*} & \mathrm{k}=\text { rate } /\left(\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}\right) \text { e.g. using experiment } 3=9.22 \times 10^{-7} /\left(0.1 \times 0.3^{2}\right) \\ & \begin{array}{l} 1.024 \times 10^{-4}(1) \\ \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}(1) \end{array} \tag{1} \end{align*}$	2

Question	Answer	Marks
2(a)(i)	Proton / H^{+}donor	1
2(a)(ii)	$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$ acid1 base2 acid2 base1 (1)	2
2(b)(i)	$50 \mathrm{~cm}^{3} 0.002 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ in total volume of $100 \mathrm{~cm}^{3}=0.001 \mathrm{~mol} \mathrm{dm}^{-3}$ (1) $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$so $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-3}=0.001 \mathrm{~mol} \mathrm{dm}^{-3}$ (1) i.e. HCl fully dissociated so strong (1)	3
2(b)(ii)	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$	1
2(b)(iii)	$\begin{aligned} & {[\mathrm{HF}]=[\mathrm{F}] \text { so } \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}(1)} \\ & \text { so } \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]=10^{-3.2}=6.31 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \text { (1) } \\ & \mathrm{H}^{+} \text {reacts with } \mathrm{F}^{-} / \text {the } \mathrm{HF} \rightleftharpoons \mathrm{H}^{+}+\mathrm{F}^{-} \text {equilibrium shifts left (1) } \\ & \text { (so) approx. constant }\left[\mathrm{H}^{+}\right] \text {(1) } \end{aligned}$	4
2(b)(iv)	$\begin{align*} & 6.31 \times 10^{-4}=\left[\mathrm{H}^{+}\right]^{2} / 0.1 \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ } 6.31 \times 10^{-4} \times 0.1=7.944 \times 10^{-3}} \tag{1}\\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 7.944 \times 10^{-3}=2.10 \tag{1} \end{align*}$	2
2(b)(v)	$\mathrm{H}-\mathrm{F}$ stronger bond than $\mathrm{H}-\mathrm{Cl}$ AND HF is a weaker acid than HCl (1) so H-F dissociates less (1)	2

Question	Answer	Marks
2(c)(i)	pH at start = 2.1 (1) Steep up then levelling off (1) pH and volume at half equivalence (3.2 and $\left.15 \mathrm{~cm}^{3}\right)(1)$ Equivalence point at $30 \mathrm{~cm}^{3}$ and vertical for at least one square (1) Levelling off at pH 11-13 (1)	$\mathbf{5}$
2(c)(ii)	Phenol red (1) pK a_{a} corresponds to pH at equivalence point (1)	

Question	Answer	Marks
3(a)(i)	$\begin{aligned} & \mathbf{A}=\text { condensation (1) } \\ & \mathbf{B}=\text { addition (1) } \\ & \mathbf{C}=\text { condensation } \end{aligned}$	3
3(a)(ii)	$\begin{aligned} & \mathbf{A}=\text { amide }(1) \\ & \mathbf{C}=\text { glycosidic } \end{aligned}$	2
3(a)(iii)	 (1) (1)	2
3(a)(iv)	 2 benzene rings only attached to the main carbon chain (1) Rest correct (1)	2

Question	Answer	Marks
3(b)(i)	No change in functional group level (1) Hydrolysis (1) $\mathrm{H}^{+}(\mathrm{aq}) /$ aqueous acid (1) FGL of COO carbon falls / changes from carboxylic to alcohol level / from 3 to 1 (1) $\mathrm{LiA}_{4}(1)$	6
3(b)(ii)	Acidified dichromate / H^{+}with $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	1
3(b)(iii)	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \\ & \text { Correct species (1) } \\ & \text { Balancing (1) } \end{aligned}$	2
3(b)(iv)	Reaction 3: Reflux (1) Reaction 4: (Immediate / continuous) distillation (1) Reflux ensures aldehyde intermediate remains in reaction mixture or distillation removes aldehyde to avoid further oxidation (1)	3

Question	Answer	Marks
4(a)(i)	Increasing anion size F to I / down the group (1) Cu^{2+} is smaller than $\mathrm{Cu}^{+}(1)$ Greater charge of Cu^{2+} than Cu^{+}(1) (so) increased attraction linked to more exothermic lattice energies	4
4(a)(ii)	Calculation of predicted value based on ionic model assumes perfect ionic character / spherical ions (1) Bromide more polarisable than fluoride (1) Partial covalency greater in bromide (1)	3
4(b)(i)	$E^{\circ}=+0.51 \mathrm{~V}$ Sign (conditional on answer) (1) Value (1)	2
4(b)(ii)	Blue (solution) (of Cu^{2+}) (1) Brown solid (of copper metal) (1)	2
4(b)(iii)	$\begin{align*} & E_{\text {cell }}^{\ominus}(298 \mathrm{~K})=0.87-0.54=+0.33 \mathrm{~V}(1) \\ & \Delta G=-\mathrm{nF} E_{\text {cell }}^{\ominus}=-1 \times 9.65 \times 10^{4} \times 0.33=-31845 \tag{1}\\ & -31845=-(8.31)(298) \ln K_{\mathrm{c}} ; K_{\mathrm{c}}=3.84 \times 10^{5}(1) \end{align*}$	3
4(b)(iv)	White solid (of CuI) OR brown solution (of I_{2})	1

Question	Answer	Marks
4(c)	$\begin{align*} & \mathbf{W}=\mathrm{CuO}(1) \\ & \mathbf{X}=\mathrm{Cu}_{2} \mathrm{O}(1) \\ & \mathbf{Y}=\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(1) \\ & \mathbf{Z}=\mathrm{CuCl}_{4}^{2-}(1) \\ & \mathrm{CuCO}_{3} \rightarrow \mathrm{CuO}+\mathrm{CO}_{2}(1) \\ & 4 \mathrm{CuO} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{O}_{2}(1) \\ & \mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}+\mathrm{SO}_{4}^{2-} \tag{1}\\ & 2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}(1) \\ & \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CuCl}_{4}^{2-}+6 \mathrm{H}_{2} \mathrm{O}(1) \tag{1}\\ & \mathbf{Y}=\text { octahedral } \mathrm{AND} \mathrm{Z}=\text { tetrahedral (1) } \end{align*}$	10

Question	Answer	Marks
5(a)(i)	rotates (plane) polarised light anticlockwise	1
5(a)(ii)	 Assigns correct priority order $\mathrm{OH}=1 ; \mathrm{CH}_{2} \mathrm{NH}_{2}=2$; ring $=3 ; \mathrm{H}=4$ (1) With lowest priority group facing away / into page remaining groups rank in decreasing order in clockwise direction (1)	3
5(b)(i)	(Nucleus has) spin	1
5(b)(ii)	Electrons create shielding (1) More shielding = signal shifts upfield / lower values (of delta)/ to the right (1)	2

Question

