

Cambridge International Examinations Cambridge Pre-U Certificate

CHEMISTRY

9791/03 May/June 2017

Paper 3 Part B Written MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

This document consists of **10** printed pages.

Question	Answer	Marks
1(a)(i)	Minimum of two correct half-life calculations, ca. 1100 s (1) Constant half-life so first order (1)	2
1(a)(ii)	$Rate = k[N_2O_5]$	1
1(a)(iii)	Values from graph used in $\ln(C_0/C_t) = kt$ e.g. $\ln(2.35/0.5) = k \times 2500$ (1)	3
	Rearrange for k e.g. $k = {\ln(2.35/0.5)}/2500 = 1.548/2500 (1)$	
	Correct answer with units = $6.190 \times 10^{-4} \text{ s}^{-1}$ (1)	
1(a)(iv)	Slowest step (in the mechanism)	1
1(a)(v)	Adds up all 3 steps and show that they cancel to the overall equation	1
1(b)(i)	1st order	1
1(b)(ii)	2nd order	1
1(b)(iii)	Working using any other set of data. e.g. using experiment $3 = 9.22 \times 10^{-7} \times (5/3)^2 (1) = 2.561 \times 10^{-6} \text{ (mol dm}^{-3} \text{ s}^{-1}) (1)$	2
1(b)(iv)	Rate = $k[H_2][NO]^2$	1
1(b)(v)	$k = rate/([H_2][NO]^2)$ e.g. using experiment $3 = 9.22 \times 10^{-7}/(0.1 \times 0.3^2)$	2
	1.024×10^{-4} (1) dm ⁶ mol ⁻² s ⁻¹ (1)	

Question	Answer	Marks
2(a)(i)	Proton / H ⁺ donor	1
2(a)(ii)	$\begin{array}{rcl} HF &+& H_2O \rightleftharpoons H_3O^+ &+& F^- & (1)\\ acid1 & base2 & acid2 & base1 & (1) \end{array}$	2
2(b)(i)	$50 \text{ cm}^3 0.002 \text{ mol dm}^{-3} \text{ HC}l$ in total volume of $100 \text{ cm}^3 = 0.001 \text{ mol dm}^{-3}$ (1)	3
	pH = $-\log_{10}[H^+]$ so $[H^+] = 10^{-pH} = 10^{-3} = 0.001 \text{ mol dm}^{-3}$ (1)	
	i.e. HCl fully dissociated so strong (1)	
2(b)(ii)	$(K_{a} =) \frac{[H_{3}O^{+}][F^{-}]}{[HF]}$	1
2(b)(iii)	$[HF] = [F^{-}] \text{ so } pH = pK_a (1)$	4
	so $\mathbf{K}_{a} = [\mathrm{H}^{+}] = 10^{-3.2} = 6.31 \times 10^{-4} \mathrm{mol}\mathrm{dm}^{-3}$ (1)	
	H^+ reacts with F^- / the HF \Rightarrow H^+ + F^- equilibrium shifts left (1)	
	(so) approx. constant [H ⁺] (1)	
2(b)(iv)	$\begin{array}{l} 6.31 \times 10^{-4} = [H^+]^2 / 0.1 \\ [H^+] = \sqrt{6.31 \times 10^{-4} \times 0.1} = 7.944 \times 10^{-3} \ (1) \\ pH = -log[H^+] = -log \ 7.944 \times 10^{-3} = 2.10 \ (1) \end{array}$	2
2(b)(v)	H–F stronger bond than H–C l AND HF is a weaker acid than HC l (1) so H–F dissociates less (1)	2

Question	Answer	Marks
2(c)(i)	pH at start = 2.1 (1)	5
	Steep up then levelling off (1)	
	pH and volume at half equivalence (3.2 and 15 cm^3) (1)	
	Equivalence point at 30 cm ³ and vertical for at least one square (1)	
	Levelling off at pH 11–13 (1)	
2(c)(ii)	Phenol red (1) pK _a corresponds to pH at equivalence point (1)	2

Question	Answer	Marks
3(a)(i)	A = condensation (1) B = addition (1) C = condensation (1)	3
3(a)(ii)	A = amide (1) C = glycosidic (1)	2
3(a)(iii)	$\begin{array}{c c} CI - C - CI H_2 N \longrightarrow NH_2 \\ O & O \\ (1) & (1) \end{array}$	2
3(a)(iv)	$\begin{array}{c c} H & H & H & H & H & H & H & H & H \\ \hline C & C & C & C & C & C & C & C & C & C$	2
	2 benzene rings only attached to the main carbon chain (1) Rest correct (1)	

Question	Answer	Marks
3(b)(i)	No change in functional group level (1) Hydrolysis (1) H ⁺ (aq) / aqueous acid (1)	6
	FGL of COO carbon falls / changes from carboxylic to alcohol level / from 3 to 1 (1) Reduction (1) LiA $l\!H_4$ (1)	
3(b)(ii)	Acidified dichromate / H ⁺ with Cr ₂ O ₇ ^{2–}	1
3(b)(iii)	$C_2H_5OH + 2[O] \rightarrow CH_3CO_2H + H_2O$	2
	Correct species (1) Balancing (1)	
3(b)(iv)	Reaction 3: Reflux (1)	3
	Reaction 4: (Immediate / continuous) distillation (1)	
	Reflux ensures aldehyde intermediate remains in reaction mixture or distillation removes aldehyde to avoid further oxidation (1)	

Question	Answer	Marks
4(a)(i)	Increasing anion size F to I / down the group (1)	4
	Cu^{2+} is smaller than Cu^{+} (1)	
	Greater charge of Cu ²⁺ than Cu ⁺ (1)	
	(so) increased attraction linked to more exothermic lattice energies (1)	
4(a)(ii)	Calculation of predicted value based on ionic model assumes perfect ionic character / spherical ions (1)	3
	Bromide more polarisable than fluoride (1)	
	Partial covalency greater in bromide (1)	
4(b)(i)	$E^{9} = +0.51 \text{ V}$	2
	Sign (conditional on answer) (1) Value (1)	
4(b)(ii)	Blue (solution) (of Cu ²⁺) (1) Brown solid (of copper metal) (1)	2
4(b)(iii)	E_{cell}^{9} (298 K) = 0.87 - 0.54 = +0.33 V (1)	3
	$\Delta G = -nFE^{\circ}_{cell} = -1 \times 9.65 \times 10^4 \times 0.33 = -31845 $ (1)	
	$-31845 = -(8.31)(298) \ln K_c; K_c = 3.84 \times 10^5$ (1)	
4(b)(iv)	White solid (of CuI) OR brown solution (of I_2)	1

May/June	2017
----------	------

Question	Answer	Marks
4(c)	$\mathbf{W} = \mathrm{CuO}$ (1)	10
	$\mathbf{X} = \mathrm{Cu}_2 \mathrm{O} \ (1)$	
	$Y = Cu(H_2O)_6^{2+}$ (1)	
	$Z = CuCL^{2-}$ (1)	
	$CuCO_3 \rightarrow CuO + CO_2$ (1)	
	$4CuO \rightarrow 2Cu_2O + O_2$ (1)	
	CuO + H ₂ SO ₄ + 5H ₂ O → Cu(H ₂ O) ₆ ²⁺ + SO ₄ ²⁻ (1)	
	$2Cu^{2_+} + 4I^- \rightarrow 2CuI + I_2$ (1)	
	$Cu(H_2O)_6^{2+} + 4Cl^- \rightarrow CuCl_4^{2-} + 6H_2O$ (1)	
	\mathbf{Y} = octahedral AND \mathbf{Z} = tetrahedral (1)	

Question	Answer	Marks
5(a)(i)	rotates (plane) polarised light anticlockwise	1
5(a)(ii)	HO HO HO HO HO HO HO HO HO HO HO HO HO H	3
5(b)(i)	(Nucleus has) spin	1
5(b)(ii)	Electrons create shielding (1) More shielding = signal shifts upfield / lower values (of delta) / to the right (1)	2

Question	Answer	Marks
5(c)	$H_{3}C \xrightarrow{OH H}_{I} \xrightarrow{I}_{-} \stackrel{O-}{-} \stackrel{O-}{-} \stackrel{O-}{-} \stackrel{O-}{-} \stackrel{O+}{-} \stackrel{H}{-} \stackrel{H}{-} \stackrel{O-}{-} $	10
	Fits molecular formula and tri-substituted ring (1) Rest correct (1) $H_{3C} \longrightarrow C_{-}C_{-}C_{-}OH + 3H_{3C}C_{-}OH + 3H_{3C}C_{-}OH + 3H_{3C}C_{-}OH + 3HCI + 3HC$	
	Phenol OH reacts to form correct ester (1) Alcohol OHs react to form correct esters (1)	
	$ \begin{array}{c} H_{3}C \\ O \\ HO \end{array} \begin{array}{c} OH \\ C \\ -C \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ -C \\ -C \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ -C \\ -C \\ -OH \\ H \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ -C \\ -C \\ -OH \\ H \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ -C \\ -C \\ -OH \\ H \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ +H_{2}O \\ -C \\ -OH \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ -C \\ -C \\ -OH \\ H \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ +H_{2}O \\ -C \\ -OH \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ -C \\ -C \\ -OH \\ H \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ +H_{2}O \\ -C \\ -OH \\ -H \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ -C \\ -C \\ -OH \\ -H \\ H \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ -C \\ -C \\ -OH \\ -H \\ H \\ H \\ H \\ H \\ H \end{array} \begin{array}{c} OH \\ -C \\ -C \\ -OH \\ -H \\ -H \\ -H \\ -H \\ -H \\ H \\ H \\ H \\$	
	Signals A to C singlets due to 3 O–H protons (1)	
	Signal D due to CH proton in CHOHCH ₂ OH group (1)	
	Signal E due to CH_2 protons in CHOHCH ₂ OH group (1)	
	Signal F due to CH_3 protons on CH_3 group (1)	
	Signal D is a triplet because split by 2 neighbouring protons AND	
	Signal E is a doublet because split by one neighbouring proton AND	
	Signal F is a singlet because there are no neighbouring protons (1)	