## Orbitals & electron spin

## **Question Paper 1**

| Level      | Pre U                                     |  |
|------------|-------------------------------------------|--|
| Subject    | Chemistry                                 |  |
| Exam Board | Cambridge International Examinations      |  |
| Topic      | Orbitals & electron spin-Atomic structure |  |
| Booklet    | Question Paper 1                          |  |

Time Allowed: 36 minutes

Score: /30

Percentage: /100

**Grade Boundaries:** 

1 (a) Nitrogen and phosphorus are both found in Group 15.

Phosphorus forms more than one allotrope.

(i) Draw a dot-cross diagram to show the bonding in nitrogen, N<sub>2</sub>. Show outer electrons only.

(ii) What is meant by the term allotrope?

[1]

(iii) White phosphorus is a solid and exists as P<sub>4</sub> molecules with a tetrahedral structure as shown.



Using the data in Table 1.1 work out the enthalpy change for the following conversion. Include a sign in your answer.

$$P_4(s) \longrightarrow 2P_2(g)$$

Table 1.1

|                                            | energy change/kJ mol <sup>-1</sup> |
|--------------------------------------------|------------------------------------|
| P–P bond energy                            | 198                                |
| P=P bond energy                            | 485                                |
| enthalpy of vaporisation of P <sub>4</sub> | 12                                 |

$$\Delta_{r}H^{\Theta} = \dots kJ \,\text{mol}^{-1}$$
 [3] sign

(iv) Chemists have recently managed to prepare P<sub>2</sub> molecules in the solid state, trapped in an organic framework (reported in *Nature Chemistry*, 2010). The labelled molecular orbital diagram represents the bonding in P<sub>2</sub>, which has a bond order of 3.



Using similar techniques  $P_2^{\ 2+}$  and  $P_2^{\ +}$  were also trapped and characterised.

Using the molecular orbital diagram or otherwise, give the bond order in these species.

Bond order in 
$$P_2^{2+} = \dots$$
 Bond order in  $P_2^{+} = \dots$  [2]

## **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

| (b)   | Car          | bon and silicon are both members of Group 14.                                                                                           |    |
|-------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|----|
|       | (i)          | What is meant by the term first ionisation energy?                                                                                      |    |
|       |              |                                                                                                                                         |    |
|       |              |                                                                                                                                         | •• |
|       | <i>(</i> 11) |                                                                                                                                         | 3] |
|       | (ii)         | Explain why the first ionisation energy of silicon is lower than that of carbon.                                                        |    |
|       |              |                                                                                                                                         |    |
|       |              |                                                                                                                                         |    |
|       |              | [                                                                                                                                       | 3] |
| (iii) | (iii)        | State the type of covalent bond typically seen in                                                                                       |    |
|       |              | • single bonds,                                                                                                                         |    |
|       |              | additional bonds in a multiple bond                                                                                                     | 1] |
| (     | (iv)         | Carbon readily forms multiple bonds with itself, while silicon does not form thes bonds so easily.                                      | e  |
|       |              | The first compound containing a Si=Si double bond was synthesised in 1972. On such compound contains the following percentages by mass. | е  |
|       |              | C 41.3% H 10.3%                                                                                                                         |    |
|       |              | Find the empirical formula of this compound and draw a possible structure, give that it contains only one Si=Si double bond.            | n  |
|       |              |                                                                                                                                         |    |
|       |              |                                                                                                                                         |    |
|       |              |                                                                                                                                         |    |
|       |              |                                                                                                                                         |    |
|       |              |                                                                                                                                         |    |

empirical formula ......[3] structure

2. (a) (i) Sketches of the shapes of the atomic orbitals from the s, p and d subshells are shown below, in random order. Label **each** orbital using labels such as  $p_x$ ,  $d_{xy}$ , etc.





(ii) There are two elements in the first row of the d block whose gaseous atoms have all their 3d orbitals fully occupied. Name the two elements.

..... and ..... [2]

[5]

- (b) When the atomic orbitals from two atoms overlap a chemical bond may result. The p orbitals can overlap to form sigma  $(\sigma)$  or pi  $(\pi)$  bonds. When two atoms overlap the z-axis is used to define the internuclear axis.
  - (i) On the diagram below draw two p orbitals (one orbital on each atom) that could overlap to produce a sigma  $(\sigma)$  bond.



(ii) On the diagram below draw two p orbitals (one orbital on each atom) that could overlap to produce a **single** pi  $(\pi)$  bond.



[1]

## **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

| (c) | usir  | ansition metal atoms such as chromium sometimes form bonds between themselves ing their d orbitals. A compound containing a chromium-chromium quintuple bond e. with a bond order of 5) was recently reported ( <i>Nature Chemistry</i> , 2009).                                                                                                                                                                                                              |  |  |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | (i)   | Complete the electron configuration of a chromium atom in the gas phase.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|     |       | Ar][1]                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|     | (ii)  | The z-axis is used to define the internuclear axis of a chemical bond. Suggest which atomic d orbital can overlap with the same orbital on another atom to form a single sigma ( $\sigma$ ) bond.                                                                                                                                                                                                                                                             |  |  |
|     |       | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|     | (iii) | i) The d orbitals of one chromium atom can overlap with d orbitals of the same typ on another chromium atom to form pi $(\pi)$ bonds and delta $(\delta)$ bonds. While a single sigma $(\sigma)$ bond involves the overlap of two orbital lobes in total, and a single pi $(\tau)$ bond four lobes, a single delta $(\delta)$ bond involves the overlap of eight lobes in total When two atoms overlap the $z$ -axis is used to define the internuclear axis. |  |  |
|     |       | Suggest two different d orbitals that could be involved in pi $(\pi)$ bonds, and two different d orbitals that could be involved in delta $(\delta)$ bonds.                                                                                                                                                                                                                                                                                                   |  |  |
|     |       | οi (π):                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|     |       | delta $(\delta)$ : and                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|     |       | [Total: 13]                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |