Orbitals & electron spin ## **Question Paper 1** | Level | Pre U | | |------------|---|--| | Subject | Chemistry | | | Exam Board | Cambridge International Examinations | | | Topic | Orbitals & electron spin-Atomic structure | | | Booklet | Question Paper 1 | | Time Allowed: 36 minutes Score: /30 Percentage: /100 **Grade Boundaries:** 1 (a) Nitrogen and phosphorus are both found in Group 15. Phosphorus forms more than one allotrope. (i) Draw a dot-cross diagram to show the bonding in nitrogen, N₂. Show outer electrons only. (ii) What is meant by the term allotrope? [1] (iii) White phosphorus is a solid and exists as P₄ molecules with a tetrahedral structure as shown. Using the data in Table 1.1 work out the enthalpy change for the following conversion. Include a sign in your answer. $$P_4(s) \longrightarrow 2P_2(g)$$ Table 1.1 | | energy change/kJ mol ⁻¹ | |--|------------------------------------| | P–P bond energy | 198 | | P=P bond energy | 485 | | enthalpy of vaporisation of P ₄ | 12 | $$\Delta_{r}H^{\Theta} = \dots kJ \,\text{mol}^{-1}$$ [3] sign (iv) Chemists have recently managed to prepare P₂ molecules in the solid state, trapped in an organic framework (reported in *Nature Chemistry*, 2010). The labelled molecular orbital diagram represents the bonding in P₂, which has a bond order of 3. Using similar techniques $P_2^{\ 2+}$ and $P_2^{\ +}$ were also trapped and characterised. Using the molecular orbital diagram or otherwise, give the bond order in these species. Bond order in $$P_2^{2+} = \dots$$ Bond order in $P_2^{+} = \dots$ [2] ## **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | (b) | Car | bon and silicon are both members of Group 14. | | |-------|--------------|---|----| | | (i) | What is meant by the term first ionisation energy? | | | | | | | | | | | •• | | | <i>(</i> 11) | | 3] | | | (ii) | Explain why the first ionisation energy of silicon is lower than that of carbon. | | | | | | | | | | | | | | | [| 3] | | (iii) | (iii) | State the type of covalent bond typically seen in | | | | | • single bonds, | | | | | additional bonds in a multiple bond | 1] | | (| (iv) | Carbon readily forms multiple bonds with itself, while silicon does not form thes bonds so easily. | e | | | | The first compound containing a Si=Si double bond was synthesised in 1972. On such compound contains the following percentages by mass. | е | | | | C 41.3% H 10.3% | | | | | Find the empirical formula of this compound and draw a possible structure, give that it contains only one Si=Si double bond. | n | empirical formula[3] structure 2. (a) (i) Sketches of the shapes of the atomic orbitals from the s, p and d subshells are shown below, in random order. Label **each** orbital using labels such as p_x , d_{xy} , etc. (ii) There are two elements in the first row of the d block whose gaseous atoms have all their 3d orbitals fully occupied. Name the two elements. and [2] [5] - (b) When the atomic orbitals from two atoms overlap a chemical bond may result. The p orbitals can overlap to form sigma (σ) or pi (π) bonds. When two atoms overlap the z-axis is used to define the internuclear axis. - (i) On the diagram below draw two p orbitals (one orbital on each atom) that could overlap to produce a sigma (σ) bond. (ii) On the diagram below draw two p orbitals (one orbital on each atom) that could overlap to produce a **single** pi (π) bond. [1] ## **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | (c) | usir | ansition metal atoms such as chromium sometimes form bonds between themselves ing their d orbitals. A compound containing a chromium-chromium quintuple bond e. with a bond order of 5) was recently reported (<i>Nature Chemistry</i> , 2009). | | | |-----|-------|---|--|--| | | (i) | Complete the electron configuration of a chromium atom in the gas phase. | | | | | | Ar][1] | | | | | (ii) | The z-axis is used to define the internuclear axis of a chemical bond. Suggest which atomic d orbital can overlap with the same orbital on another atom to form a single sigma (σ) bond. | | | | | | [1] | | | | | (iii) | i) The d orbitals of one chromium atom can overlap with d orbitals of the same typ on another chromium atom to form pi (π) bonds and delta (δ) bonds. While a single sigma (σ) bond involves the overlap of two orbital lobes in total, and a single pi (τ) bond four lobes, a single delta (δ) bond involves the overlap of eight lobes in total When two atoms overlap the z -axis is used to define the internuclear axis. | | | | | | Suggest two different d orbitals that could be involved in pi (π) bonds, and two different d orbitals that could be involved in delta (δ) bonds. | | | | | | οi (π): | | | | | | delta (δ) : and | | | | | | [Total: 13] | | |