MARK SCHEME for the May/June 2013 series

1348 FURTHER MATHEMATICS

1348/01

Paper 1 (Further Pure Mathematics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper
			Pre-U – May/June 2013	1348	01
1		x^2 –	$-6x + 12 \equiv (x - 3)^2 + 3$		B1
		$\int_{2}^{6} \overline{\left(\cdot \right)}$	$\frac{1}{\sqrt{3}} + (x-3)^2 dx = \left[\frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{x-3}{\sqrt{3}}\right)\right]_2^6 \qquad \mathbf{M1} \tan^{-1}$	1st A1 $\left(\frac{x-3}{\sqrt{3}}\right)$	M1 A1
			$=\frac{1}{\sqrt{3}}\left(\frac{\pi}{3}-\left(-\frac{\pi}{6}\right)\right)=\frac{\pi}{2\sqrt{3}}$		A1
					[4]
2		ln(1	$(+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5 + \dots$ from the Formul	a Book	
		ln(1	$(-x) = -x - \frac{1}{2}x^{2} - \frac{1}{3}x^{3} - \frac{1}{4}x^{4} - \frac{1}{5}x^{5} - \dots$		B1
		$\frac{1}{2}$ lr	$\ln\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\left\{\ln(1+x) - \ln(1-x)\right\}$		M1
			$= \frac{1}{2} \times 2\left\{x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots\right\} = \tanh^{-1}x \text{from the}$	Formula Book	A1
		ln(1	$(1+x)$ valid for $-1 < x \le 1$ and so $\ln(1-x)$ is valid for $-1 \le 1$ so LHS valid for $-1 < x < 1$, which matches the range for	$\leq x < 1$ RHS	B1
					[4]
3	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$=\frac{(x^2-4)(1-(x+1))(2x)}{(x^2-4)^2}$ Use of quotient rule; correct unside	mplified	M1 A1
			$= -\frac{(x^2 + 2x + 4)}{(x^2 - 4)^2} = -\frac{(x + 1)^2 + 3}{(x^2 - 4)^2}$ or clear explanation this	s is < 0	E1
		AL	T: $y = \frac{\frac{3}{4}}{x-2} + \frac{\frac{1}{4}}{x+2} \implies \frac{dy}{dx} = \frac{-\frac{3}{4}}{(x-2)^2} + \frac{-\frac{1}{4}}{(x+2)^2} < 0$		
					[3]

Page 3			Mark Scheme	Syllabus Pa	
			Pre-U – May/June 2013	1348	01
	<i>(</i> 1)				
3	(ii)	Asy	ymptotes $y = 0$ Stated or clear from graph $x = \pm 2$ Stated or clear from graph		B1 B1
		Cro	pssing-points $(0, -\frac{1}{4})$ and $(-1, 0)$ Noted or clearly s	hown on graph	B1 B1
			3 re	gions	M1
			All	correct (incl. no T	Ps) A1
					[6]
4	(i)	d ₁ > (AI	$\mathbf{d_2}$ attempted = $14\mathbf{i} + 35\mathbf{j} - 21\mathbf{k}$ LT: Use of 2 scalar prods. & attempt to get 2 components in	terms of the 3 rd)	M1 A1
					[2]
	(ii)	Sh.	Dist. = $ (\mathbf{b} - \mathbf{a}). \ \hat{\mathbf{n}} $ $(\mathbf{b} - \mathbf{a}) = \pm (\mathbf{i} + 3\mathbf{j} - 7\mathbf{k})$ $\hat{\mathbf{n}} = \frac{1}{\sqrt{3}}$	$\frac{1}{8}(2\mathbf{i}+5\mathbf{j}-3\mathbf{k})$ ft	M1 B1 B1
			$= \frac{1}{\sqrt{38}} (2\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}) \bullet (\mathbf{i} + 3\mathbf{j} - 7\mathbf{k}) = \frac{1}{\sqrt{38}} 2 + 15 + 21 $	ft scalar prod.	B1
		_	_	=	A1
		√3	8 cao		
		AL	T: Solving $\begin{pmatrix} 2\\4\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\4 \end{pmatrix} - \begin{pmatrix} 1\\1\\10 \end{pmatrix} - \mu \begin{pmatrix} 9\\-3\\1 \end{pmatrix} = k \begin{pmatrix} 2\\5\\-3 \end{pmatrix}$ to find close	esest points on line	2,
		(3,	6, 7) from $\lambda = 1$ and $(1, 1, 10)$ from $\mu = 0$ giving $k = 1$ and	d Sh.D. = $\sqrt{38}$	
					[5]

	Page 4		Mark Scheme	Syllabus	Paper
			Pre-U – May/June 2013	1348	01
	•				
5	(i)	z^n	$-\frac{1}{2^{n}} = (\cos n\theta + i.\sin n\theta) - (\cos[-n\theta] - i.\sin[-n\theta])$		M1
			2 De Moivre's Thr	n used for at least	$-\pi^n$
					. 2
			$= \cos n\theta + i.\sin n\theta - (\cos n\theta - i.\sin n\theta) = 2i\sin n\theta$		
		Giv	en answer obtained from 2 correct uses of de Moivre's Thm	n. and correct trig.	Al
					[2]
					[4]
	(ii)		$\left(-\frac{1}{z}\right)^5 = 32i \sin^5 \theta$		M1
			$= z^{5} - 5z^{3} + 10z - \frac{10}{z} + \frac{5}{z^{3}} - \frac{1}{z^{5}}$ Use of bin	nomial expansion	M1
			$= \left(z^5 - \frac{1}{z^5}\right) - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right) \text{Pairing up}$	o terms	M1
			$= 2i \sin 5\theta - 10i \sin 3\theta + 20i \sin \theta \qquad \text{Use of (i)}$'s result (×3)	M1
		$\Rightarrow \sin^5 \theta = \frac{1}{16} \sin 5\theta - \frac{5}{16} \sin 3\theta + \frac{5}{8} \sin \theta$			
					[5]
6	(1)	<i>r</i> =	$1 + r\sin\theta \implies \sqrt{x^2 + y^2} = 1 + y$		M1 M1
		Squ	having and cancelling: $x^2 + y^2 = y^2 + 2y + 1 \implies y = \frac{1}{2} (x^2)$	-1)	A1
					[3]
	(11)	Par	abola All correct: Crossing-points at $(\pm 1, 0)$ and $(0, -\frac{1}{2})$)	MIAI
					[2]
	(iii)	$\int_{\pi}^{2\pi} \overline{(}$	$\frac{1}{1-\sin\theta} d\theta = 2 \times \int_{\pi}^{2\pi} \frac{1}{2} r^2 d\theta \qquad Recognition that the second second$	his is related to ar	ea M1
			$= -2 \int_{\frac{1}{2}}^{1} (x^2 - 1) dx$ Matching up with	parabola-related	M1
			-1 region		
			$=-\left[\frac{x^3}{3}-x\right]_{-1}^{1}=\frac{4}{3}$ Ignore –ve answe	r	A1
					[3]
					121

	Page 5		Mark Scheme	Syllabus	Paper
			Pre-U – May/June 2013	1348	01
7	(i)	x^3 -	$y^{3} = (x + y)^{3} - 3xy(x + y)$ or equivalent		M1 A1
					[2]
	(ii)	(a)	$\alpha + \beta$ (= 3) and $\alpha\beta$ (= $\frac{8}{9}$) substd. into (i)'s result ft \Rightarrow	$\alpha^3 + \beta^3 = 19$	M1 A1
					[2]
		(b)	$9t^2 - 27t + 8 = 0 \implies (3t - 1)(3t - 8) = 0 \implies \alpha, \beta = \frac{1}{3}, \frac{8}{3}$	<u>1</u> 1	M1 A1
			Then $\alpha^3 + \beta^3 = 19 = \left(\frac{1}{3}\right)^3 + \left(\frac{8}{3}\right)^3$ Explicit statement requi	red	A1
					[3]
8	(i)	(a) resu	$x \in G \Rightarrow \exists x^{-1} \in G$ and pre-multiplying by this (or x in the solution of the second secon	$e \Leftarrow case$) gives the	ne B1 B1
		1000	(NB Both directions must be dealt with))	
					[2]
		(b) permand	Since each xg_i is distinct, and there are <i>n</i> of them, the set nutation of the elements of <i>G</i> OR mention that it is just a r hence contains a permutation of the elements of <i>G</i>	<i>xG</i> is just a ow of the group ta	ble B1
					[1]
	(ii)	Mu	tiply all elements together: $xg_1 xg_2 xg_3 \dots xg_n = g_1 g_2 g_3$.	$\cdots g_n$	E 1
		(Sin	ace G is abelian) $\Rightarrow x^n (g_1 g_2 g_3 \dots g_n) = (g_1 g_2 g_3 \dots g_n)$	$g_3 \ldots g_n$)	E1
		Sino Pre/	ce $g_1 g_2 g_3 \dots g_n$ is an element of <i>G</i> , it has an inverse; 'post-mult ^g . by this inverse then gives $x^n = e$		E1
					[3]
	(iii)	(a)	Elements may have an order which divides into (is a factor	of) <i>n</i>	B1
					[1]
		(b)	Because the change of the order of multns. in $a_{a} = a_{a} = a_{a} = a_{a} = a_{a}^{n} (a_{a} = a_{a})$		D1
			is only valid in an abelian group $(g_1 g_2 g_3 \dots g_n)$		DI
					[1]

	Page 6		Mark Scheme	Syllabus	Paper
			Pre-U – May/June 2013	1348	01
9		Ref	Plection in $y = x \tan \frac{1}{8}\pi$: $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$ All	ow $\cos\left(\frac{1}{4}\pi\right)$'s, et	c. B1
		She	ear // y-axis, mapping (1, 0) to (1, 2): $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$		B1
		Rot	ation through $\frac{1}{4}\pi$ clockwise about <i>O</i> : $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$		B1
		Shear // x-axis, mapping (0, 1) to (-2, 1): $\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$			
		Mu	ltiplying them together in this order (from right-to-left) = $\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	M1 A1
		Ref	lection in $y = x$		M1 A1
					[8]
		NB	1 Multiplying the matrices in the reverse order scores max. B1 for correct $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and M1 for "Reflection" and A	4 × B1 + M0 ; the 1 for "in <i>x</i> -axis"	en
		ND	2 incorrect final matrices automatically lose the last 2 mark	18	
10	(a)	$y = kx \cos x \implies \frac{dy}{dx} = -kx \sin x + k \cos x$ and $\frac{d^2 y}{dx^2} = -kx \cos x - 2k \sin x$ Attempt at 1st and 2nd derivatives using the <i>Product Rule</i>		ule M1	
		Sub	ostituting both of these into the given DE		M1
		-k x	$x\cos x - 2k\sin x + kx\cos x = 4\sin x$		
		Cor	mparing terms to evaluate k : $k = -2$		M1 A1
		Au	x. Eqn. $m^2 + 1 = 0$ solved $\Rightarrow m = \pm i$		M1 A1
		Con	mp. Fn. is $y_C = A \cos x + B \sin x$ ft Accept $y_C = A e^{ix}$	$+Be^{-ix}$ here	B1
		G. S has	S. is $y = A \cos x + B \sin x - 2x \cos x$ ft provided y_P has no 2) arb. consts. & y_C	B1
			Do not accept final answer involving complex number	·s	
					[8]

	Page 7		Mark Scheme	Syllabus	Paper
			Pre-U – May/June 2013	1348	01
	-				
10	(b)(i)	<i>x</i> =	1, $y = 2$ & $\frac{dy}{dx} = 1 \implies \frac{d^2 y}{dx^2} \bigg _{x = 1} = -20$		B1
		Dif	ferentiating $\frac{d^2 y}{dx^2} + y^2 \frac{dy}{dx} + xy = 5x - 19$		M1
		Use	e of <i>Product Rule</i> and implicit differentiation (at least once) $\frac{d^3y}{dx^3} + \left\{ y^2 \frac{d^2y}{dx^2} + 2y \left(\frac{dy}{dx}\right)^2 \right\} + \left\{ x \frac{dy}{dx} + y \right\} = 5 \implies \frac{d^2y}{dx^2}$	= 78	M1 A1 A1
		FT	"78" from "-20" and also from $\frac{dy}{dx}$ instead of $\left(\frac{dy}{dx}\right)^2$ (both =	x = 1 = 1)	[6]
	(ii)	Use	e of $y = y(1) + (x - 1).y'(1) + \frac{1}{2}(x - 1)^2.y''(1) + \frac{1}{6}(x - 1)^3.$	$v'''(1) + \dots$	M1
			= 2 + (x - 1) - 10(x - 1) ² + 13(x - 1) ³ + ft		A1
		Suł	postituting $x = 1.1$ into this series $\Rightarrow y(1.1) \approx 2.013$ ft		M1 A1
					[4]
11	(i)	(<i>p</i>	$(+iq)^{2} = (p^{2} - q^{2}) + i.2pq$		B1
		Co	mparing real and imaginary parts: $p^2 - q^2 = 63$ and $2pq = 63$	-16	M1
		Sol	ving simultaneously: $p = \pm 8, q = \mp 1$ i.e. $\pm (8-i)^2$	= 63 – 16i	M1 A1
					[4]
	(ii)	(a)	Use of $z^3 - (\alpha + \beta + \gamma)z^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)z - (\alpha\beta\gamma) = 0$)	M1
			A = 4 - 4i, $B = 21 - 16i$, $C = 84i.e. f(z) = z^3 - (4 - 4i)z^2 + 6$	(21 - 16i)z - 84 =	0 A1 A1 0 A1
					[4]
		(b)	Differentiating to get $f'(z) = 3z^2 - 8(1 - i)z + (21 - 16i)$ O $3z^2 - 2Az + B = 0$ ft	R	B1
			Solving $z = \frac{8 - 8i \pm \sqrt{64(1 - 2i - 1) - 12(21 - 16i)}}{6}$ using the	e quadratic formula	a M1
			$z = \frac{1}{3} \left(4 - 4i \pm \sqrt{16i - 63} \right) = \frac{1}{3} \left(4 - 4i \pm i\sqrt{63 - 16i} \right)$	ī)	A1
			Use of (i)'s result (on the right thing): $z = \frac{1}{3} (4 - 4i \pm i(8 - i))$)) = $\frac{5}{3} + \frac{4}{3}i$ or 1–	4i M1 A1
					[5]

Page 8			Mark Scheme	Syllabus	Paper
			Pre-U – May/June 2013	1348	01
12	(i)	y '(x y'''	$x) = (2x + 1) e^{2x}, \qquad y''(x) = (4x + 4) e^{2x},$ (x) = (8x + 12) e ^{2x} , $y^{(4)}(x) = (16x + 32) e^{2x}$		B1 B1 B1 B1
	(ii)	Cor	bjecture $\frac{d^n y}{dx^n} = (2^n x + n.2^{n-1}) e^{2x}$ One mark each: c	coefft. of <i>x</i> , consta	[4] nt B1 B1
	(iii)	Dif	fferentiating their conjectured expression (must be linear \times	e ^{2x})	[2] M1
			$\frac{d^{n+1}y}{dx^{n+1}} = 2 \times (2^n x + n \cdot 2^{n-1}) e^{2x} + 2^n \times e^{2x}$	FT max 1/2	A1 A1
			$= (2^{n+1}x + (n+1).2^{(n+1)-1}) e^{2x}$ Shown	n of correct form	A1
		Usu (n+	al induction round-up/explanation of proof, including clear 1) th formula is in the right form.	demonstration that	ut E1
					[5]
13	(i)	(a)	$1 - \operatorname{sech}^{2} \theta = \frac{\left(e^{\theta} + e^{-\theta}\right)^{2} - 4}{\left(e^{\theta} + e^{-\theta}\right)^{2}} = \frac{\left(e^{\theta} - e^{-\theta}\right)^{2}}{\left(e^{\theta} + e^{-\theta}\right)^{2}} = \tanh^{2} \theta \operatorname{shor}^{2} \theta$	wn legitimately	M1 A1
		(b)	$\frac{\mathrm{d}}{\mathrm{d}\theta}(\tanh\theta) = \frac{\left(\mathrm{e}^{\theta} + \mathrm{e}^{-\theta}\right)\left(\mathrm{e}^{\theta} + \mathrm{e}^{-\theta}\right) - \left(\mathrm{e}^{\theta} - \mathrm{e}^{-\theta}\right)\left(\mathrm{e}^{\theta} - \mathrm{e}^{-\theta}\right)}{\left(\mathrm{e}^{\theta} + \mathrm{e}^{-\theta}\right)^{2}} = \mathrm{s}$	$ech^2\theta$ from (a)	M1 A1
					[4]
	(ii)	(a)	$I_n = \int_{0}^{\alpha} \tanh^{2n-2} \theta \cdot \tanh^2 \theta \mathrm{d}\theta = \int_{0}^{\alpha} \tanh^{2n-2} \theta \left(1 - \mathrm{sech}^2 \theta\right) \mathrm{d}\theta$		M1 M1
			$=I_{n-1}-\left[\frac{\tanh^{2n-1}\theta}{2n-1}\right]_{0}^{\alpha} \Rightarrow I_{n-1}-I_{n}=\frac{(\tanh\alpha)^{2n-1}\theta}{2n-1}$	2 <i>n</i> -1	M1 A1
			ALT: $I_{n-1} - I_n = \int_0^\alpha \tanh^{2n-2} \theta \left(1 - \tanh^2 \theta\right) d\theta = \int_0^\alpha \tanh^{2n-2} \theta d\theta$	θ . sech ² θ d θ	M1 M1
			$=\left[\frac{\tanh^{2n-1}\theta}{2n-1}\right]_{0}^{\alpha}=\frac{(\tanh\alpha)^{2n-1}}{2n-1}$		M1 A1
					[4]

Page 9		Mark Scheme	Syllabus	Paper
		Pre-U – May/June 201	3 1348	01
13	(ii)	b) $I_0 = \int_0^\alpha 1 \mathrm{d}\theta = \alpha = \frac{1}{2}\ln 3$		B1
				[1]
		c) $(I_{n-1} - I_n) + (I_{n-2} - I_{n-1}) + (I_{n-3} - I_{n-2}) + \dots$	$+(I_2 - I_3) + (I_1 - I_2) + (I_0 - I_1)$ Use of the method of different	ces M1
		$= \sum_{r=1}^{n} \frac{(\tanh \alpha)^{2r-1}}{2r-1} = \sum_{r=1}^{n} \frac{\left(\frac{1}{2}\right)^{2r-1}}{2r-1} \text{ when } \alpha$	$u = \frac{1}{2} \ln 3$	A1
		$\Rightarrow I_0 - I_n = \sum_{r=1}^n \frac{\left(\frac{1}{2}\right)^{2r-1}}{2r-1} \qquad \text{Cancellatio}$	n of terms in the summation	M1
		$\Rightarrow I_n = \frac{1}{2}\ln 3 - \sum_{r=1}^n \frac{\left(\frac{1}{2}\right)^{2r-1}}{2r-1}$ AG		A1
		gnoring "method of differences", but opting max 3/4 M0 M1 A1 A1	for a direct iterative approach score	'S
		As $n \to \infty$, $I_n \to 0$ since $ \tanh < 1$		E 1
		$\Rightarrow \frac{1}{2}\ln 3 = \sum_{r=1}^{n} \frac{\left(\frac{1}{2}\right)^{2r-1}}{2r-1} = \frac{1}{2} + \frac{\left(\frac{1}{2}\right)^{3}}{3} + \frac{\left(\frac{1}{2}\right)^{5}}{5} + \frac{1}{2}$	$\frac{1}{2}\frac{1}{7}^{7} + \dots$	M1
		$\Rightarrow \ln 3 = 1 + \frac{1}{3.4} + \frac{1}{5.4^2} + \frac{1}{7.4^3} + \dots = \sum_{r=1}^{3}$	$\sum_{r=0}^{\infty} \frac{1}{(2r+1)4^r}$	A1
		gnoring "method of differences", but opting max 3/4 M0 M1 A1 A1	for a direct iterative approach score	s [7]