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x    from the Formula Book A1 

  ln(1 + x) valid for 11 ≤<− x  and so  ln(1 – x) is valid for 11 <≤− x  

       so LHS valid for 11 <<− x , which matches the range for RHS 
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3 (ii) Asymptotes y = 0              Stated or clear from graph 

 x = ± 2          Stated or clear from graph 

B1 

B1 

  Crossing-points  (0, –
4

1 )  and   (–1, 0)            Noted or clearly shown on graph B1 B1 

   

 

 

 

 

 

 

                                                                                               3 regions 

                                 

 

                                                                                               All correct (incl. no TPs) 

 

 

 

  

 

 

 

 

 

 

 

 

M1 
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   [6] 

4 (i) d1 × d2  attempted         

              = 14i + 35j – 21k               

(ALT: Use of 2 scalar prods. & attempt to get 2 components in terms of the 3rd) 

M1  

A1 

   [2] 

 (ii) Sh. Dist. = | (b – a). n
)

 |        (b – a) = )73( kji −+±        )352(
38

1 kjin −+=
)

 ft M1 
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38

1 kjikji −+•−+  = 21152
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1
++  ft  scalar prod.            

                                                                                                                            = 
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kµλ to find closest points on line, 

(3, 6, 7) from λ = 1  and  (1, 1, 10) from µ  = 0  giving k = 1  and Sh.D. = 38  

 

   [5] 



Page 4 Mark Scheme Syllabus Paper 

 Pre-U – May/June 2013 1348 01 
 

© Cambridge International Examinations 2013 

5 (i) 

n

n

z

z

1
− = ( )θθ nn sin.icos +  – [ ] [ ]( )θθ nn −−− sin.icos   

                                                                          De Moivre’s Thm. used for at least zn 

 

M1 

                 = ( )θθθθ nnnn sin.icossin.icos −−+  = 2i sin nθ  

Given answer obtained from 2 correct uses of de Moivre’s Thm. and correct trig. 

 

A1 

   [2] 

 (ii) 5
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M1 

                  = 2i sin 5θ  – 10i sin 3θ  + 20i sinθ             Use of (i)’s result (×3) M1 

   ⇒ sin5θ  = 
16

1 sin 5θ  – 
16

5 sin 3θ  + 
8

5 sinθ              A1 

   [5] 

6 (i) 
r = 1 + r sinθ   ⇒  yyx +=+ 1

22
 

M1 M1 

  Squaring and cancelling: 12
222

++=+ yyyx   ⇒  y = ( )12

2

1
−x  A1 

   [3] 

 (ii) Parabola       All correct: Crossing-points at (± 1, 0) and (0, –
2

1 ) M1 A1 

   [2] 
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7 (i) )(3)( 333
yxxyyxyx +−+=+  or equivalent M1 A1 

   [2] 

 (ii) (a)  α + β  (= 3)  and  αβ  (= 
9

8 )  substd. into (i)’s result  ft  ⇒  
33

βα +  = 19 M1 A1 

   [2] 

  (b)  08279
2

=+− tt   ⇒  (3t – 1)(3t – 8) = 0  ⇒  α , β  = 
3

1 , 
3

8  M1 A1 

        Then  
33

βα +  = 19 = ( ) ( )3
3

83

3

1
+   Explicit statement required A1 

   [3] 

8 (i) (a)  x ∈ G  ⇒ ∃ x –1 
∈ G  and pre-multiplying by this (or x in the ⇐ case) gives the 

result  

                                     (NB Both directions must be dealt with)  

B1 

B1 

   [2] 

  (b)  Since each  xgi  is distinct, and there are n of them, the set  xG  is just a 

permutation of the elements of G  OR mention that it is just a row of the group table 

and hence contains a permutation of the elements of G 

 

B1 

   [1] 

 (ii) Multiply all elements together:   xg1 xg2 xg3 … xgn = g1 g2 g3 …  gn E1 

  (Since G is abelian)          ⇒       xn.(g1 g2 g3 …  gn) = (g1 g2 g3 …  gn)  E1 

  Since  g1 g2 g3 …  gn  is an element of G, it has an inverse;  

Pre/post-multg. by this inverse then gives  xn = e   

 

E1 

   [3] 

 (iii) (a)  Elements may have an order which divides into (is a factor of) n   B1 

   [1] 

  (b)  Because the change of the order of multns. in   

                          g.g1 g.g2 g.g3 … g.gn = gn.(g1 g2 g3 …  gn) 

       is only valid in an abelian group 

 

B1 

   [1] 
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9 

 

Reflection in  y = x π
8

1
tan :                      











−
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       Allow cos ( ) s' 
4

1
π , etc. B1 

  
Shear // y-axis, mapping (1, 0) to (1, 2):     









12

01
 B1 

  

Rotation through π
4

1 clockwise about O:        
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1

2

1

2

1

2

1

 B1 

  
  Shear // x-axis, mapping (0, 1) to (–2, 1):     







 −

10

21
 B1 

  
Multiplying them together in this order (from right-to-left) = 









01

10
 

M1 

A1 

  Reflection               in  y = x M1 A1 

   [8] 

  NB 1 Multiplying the matrices in the reverse order scores max. 4 × B1 + M0 ; then 

          B1 for correct 








−10

01
 and M1 for “Reflection” and A1 for “in x-axis” 

 

  NB 2 Incorrect final matrices automatically lose the last 2 marks  

 

10 

 

(a) y = k x cos x  ⇒  
x

y

d

d
 = –k x sin x + k cos x   and   

2

2

d

d

x

y
 = –k x cos x – 2k sin x    

                                         Attempt at 1st and 2nd derivatives using the Product Rule 

 

 

M1 

  Substituting both of these into the given DE M1 

  –k x cos x – 2k sin x + k x cos x = 4 sin x     

  Comparing terms to evaluate k:                       k = –2  M1 A1 

    

  Aux. Eqn.  m2 + 1 = 0  solved  ⇒  m = ± i M1 A1 

  Comp. Fn. is  yC = A cos x + B sin x    ft          Accept  yC = Aeix + Be – ix  here B1 

  G. S.  is   y = A cos x + B sin x – 2x cos x   ft provided yP has no arb. consts. & yC 

has 2 

B1 

                Do not accept final answer involving complex numbers  

   [8] 
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10 

 

(b)(i) x = 1,  y = 2 & 
x

y

d

d
 = 1  ⇒  

1
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x
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y
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B1 

  
Differentiating 
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y
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d
 + xy = 5x – 19  
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  Use of Product Rule and implicit differentiation (at least once) 
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x
x

y
= 78    

FT “78” from “–20” and also from 
x

y

d

d
instead of 

2

d

d









x

y
(both = 1) 

M1 

A1 A1 

 

A1 

 

 

[6] 

 (b)(ii) Use of   y = y(1) + (x – 1).y′ (1) + 
2

1 (x – 1)2.y″ (1) + 
6

1 (x – 1)3.y′″ (1) + … M1 

                 = 2 + (x – 1) – 10(x – 1)2 + 13(x – 1)3 + …  ft A1 

  Substituting x = 1.1  into this series  ⇒  y(1.1) ≈ 2.013  ft M1 A1 

   [4] 

11 (i) ( ) ( )222

i qpqp −=+  + i.2pq B1 

  
Comparing real and imaginary parts: 63

22
=− qp  and 2pq  = –16 M1 

  Solving simultaneously :     p  = ± 8,  q  = m 1     i.e.  ( ) i1663i8
2

−=−±  M1 A1 

   [4] 

 (ii) (a) Use of  0)()()(
23

=−+++++− αβγγαβγαβγβα zzz  M1 

   A = 4 – 4i,  B = 21 – 16i,  C = 84    

                                                           i.e. f(z) = z3 – (4 – 4i)z2 + (21 – 16i)z – 84 = 0 

A1 A1 

A1 

   [4] 

  (b) Differentiating to get f′ (z) = 3z2 – 8(1 – i)z + (21 – 16i) OR  

 3z2 – 2Az + B = 0  ft 

B1 

  
 Solving z = 

6

1621121216488 )i()i(i −−−−±−
 using the quadratic formula 

 

M1 

                       z = ( )63i16i44
3

1
−±−  = ( )i1663ii44

3

1
−±−  A1 

   Use of (i)’s result (on the right thing): z = ( )i)8(ii44
3

1
−±−  = i

3

4

3

5
+  or i41−  M1 A1 

   [5] 
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12 

 

(i) 

 

y ′(x) = (2x + 1) e 2x ,            y ′′(x) = (4x + 4) e 2x ,  

 

y′′′ (x) = (8x + 12) e 2x ,        y (4) (x) = (16x + 32) e 2x  

B1 B1 

 

B1 B1 

   [4] 

  

(ii) Conjecture  
n

n

x

y

d

d
 = (2n x + n.2n – 1) e 2x             One mark each: coefft. of x, constant 

 

B1 B1 

   [2] 

 (iii) Diffferentiating their conjectured expression (must be linear × e2x) M1 

  
                  

1

1

d

d

+

+

n

n

x

y
 = 2 × (2n x + n.2n – 1) e 2x  + 2n 

× e 2x                   FT max 1/2 
 

A1 A1 

                                = (2n + 1 x + (n + 1).2(n+1) – 1) e 2x            Shown of correct form A1 

  Usual induction round-up/explanation of proof, including clear demonstration that 

(n+1)th formula is in the right form. 

E1 

   [5] 

 

13 

 

(i) (a)  1 – sech2
θ  ≡ 

( )
( )

( )
( )2

2

2

2

ee

ee

ee

4ee

θθ

θθ

θθ

θθ

−

−

−

−

+

−
≡

+

−+
 ≡ tanh2

θ   shown legitimately 
M1 

A1 

  
(b)  ( )θ

θ
tanh

d

d
= 

( )( ) ( )( )
( )2ee

eeeeeeee

θθ

θθθθθθθθ

−

−−−−

+

−−−++
 ≡ sech2

θ  from (a) 
M1 

A1 

   [4] 

 

(ii) (a)  I n = θθ

α

2

0

22
tanh.tanh∫ −n dθ  = ( )θθ

α

2

0

22
sech1tanh −∫ −n

dθ   M1 M1 

  

                      = In – 1  – 
0

12

tanh
12 α

θ









−

−

n

n

 ⇒  In – 1  –  I n = 
12

)(tanh 12

−

−

n

n

α

 
 

M1 A1 

  
      ALT: In – 1  –  I n = ( )θθ

α

2

0

22
tanh1tanh −∫ −n

dθ  = θθ

α

2

0

22
sech .tanh∫ −n

dθ   
 

M1 M1 

  

                                 = 
0

12

tanh
12 α

θ









−

−

n

n
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12

)(tanh 12

−

−

n

n

α

 
 

M1 A1 

   [4] 
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13 (ii) (b)  I0 = ∫
α

0

1dθ   = α  = 3ln
2

1  B1 

   [1] 

  (c)  ( ) ( ) ( ) ( ) ( ) ( )
10213223121
IIIIII...IIIIII

nnnnnn
−+−+−++−+−+−

−−−−−

 

                                                                                  Use of the method of differences 
M1 
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=
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−
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r

r
1

12

12

tanhα
 = 

( )
∑
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−

−

n

  r

r
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1

12

2

1

12
 when  α = 3ln

2

1  
 

A1 

  
      ⇒  I0 – In = 

( )
∑
=

−

−

n

  r

r

r
1

12

2

1

12
            Cancellation of terms in the summation 

 

M1 

  
      ⇒  

( )
∑
=

−

−

−=

n

  r

r

n

r
I

1

12

2

1

2

1

12
3ln        AG 

 

A1 

  Ignoring “method of differences”, but opting for a direct iterative approach scores  

       max 3/4 … M0   M1 A1 A1 

 

        As  n → ∞,  In → 0  since  | tanh | < 1 E1 

  
      ⇒  

( ) ( ) ( ) ( )
...

r
ln

n

  r

r

++++=

−

=∑
=

−

753112
3

7

2

1
5

2

1
3

2

1

2

1

1

12

2

1

2

1  
 

M1 

  
      ⇒     ln 3 = ...

...

++++
32

47

1

45

1

43

1
1  = ∑

∞

=
+

0
412

1

  r

r)r(
 

 

A1 

  Ignoring “method of differences”, but opting for a direct iterative approach scores  

       max 3/4 … M0   M1 A1 A1 

[[7] 

 


