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2
( 1) 4 4 1≡ + + +n n n n  

21

2
( 1)(2 1)≡ + +n n n  

 

M1 

 

M1 

M1 

 

 

A1 

[4] 

 

Splitting into separate series 

 

Both used 

good factorisation attempt 

 

 

Legitimate (AG) 

 

2 
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2
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6

1

4
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Shortest Distance = ˆ ( )     − •b a n    

 = 1

19

10 1

2 18

5 6

   
   
− • −   

   
   

 = ( )1

19
10 36 30+ +     

 = 4   

 

Alternative method: 

  

M1 A1 for common normal  i – 18j + 6k 

M1 A1 for parallel planes  x – 18y + 6z = –55  

and  –131 

M1 A1 for Sh.D formula, 
 131 55 76

4
  19

−

= =

n

 

 

M1 

A1 

 
 

M1 

 
 

B1 
 

B1 
 

A1 

[6] 

 

Attempt at vector products of the d.v.s 

(any suitable multiple) 

 
 

 

 

ˆ  n  correct 

Sc. Prod. ft correct 

3 (i) 2
2 1

2 3

− −

=

−

x x
k

x
 ⇒ 

22 (2 1) (3 1) 0− + + − =x k x k  

For non-real x,  
2(2 1) 8(3 1) 0+ − − <k k  

 
2

4 20 9 0− + <k k   ⇒  (2k – 1)(2k – 9) < 0 

⇒  no curve for  91

2 2
< = <k y  

 

B1 

 

M1 

 
 

M1 
 

A1 

[4] 

 

(AG) Shown legitimately 

 

Considering discriminant (or 

equivalent) 
 

Solving from  ∆ < 0 
 

(AG) Must be satisfactorily explained 

 

 (ii) TPs at y = 1

2
 y = 9

2
 

i.e.   
2 1

2
2 2 0− + =x x  

2 25

2
2 10 0− + =x x  

 x = 1

2
 x = 5

2
   

 

Alternative method: 

when ∆ = 0, M1 x = “
2

−

b

a
” = 

2 1

4

+k
  

M1  ⇒  x = 1

2
 (y = 1

2
) &  x = 5

2
 (y = 9

2
) A1  A1 

Note: For finding TPs via 
d

0
d

=

y

x
, max. M1 A1 

since qn. asks for a “deduce” method 

 

M1 
 

M1 
 

A1A1 

[4] 

 

First y (k) substituted back 
 

Second y (k) substituted back 
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4 (i) Attempt at det(M) 

Det = 0 Shown 

M1 

A1 

 

[2] 

 

(Or via full alternative algebraic 

method) 

 

 (ii) 

 

3 1

5 2 16

2

x y z

x y z

x y

− + + =

− + =

− + = −

 

parametrisation attempt (or equivalent) started:  

e.g. set  x = λ ,  then  y = λ – 2 

complete attempt:  z = 1 + λ – 3λ + 6 = 7 – 2λ 

all correct (p.v. and d.v.) … may be in vector 

line eqn. form:  r = 

0 1

2 1

7 2

λ

   
   
− +   

   −   

 

 

Alternative method 1: 

 

B1 as above, followed by (e.g.): 

Finding two distinct points on the solution line; 

e.g. (2, 0, 3), (0, –2, 7) M1 A1 

Then eqn. of line containing these 2 points  M1 

A1 possibly ft 

for line (of intersection) of 3 planes (given by 

the 3 eqns.) B1 

 

Alternative method 2: 

 

B1 as above, followed by: 

Vector product of any two plane normals  M1A1 

Finding coords. or p.v. of any pt. on line   B1 

Eqn. of line using these results appropriately B1 

for line (of intersection) of 3 planes (given by 

the 3 eqns.) B1 

 

 

B1 

 

M1 

 

M1 

A1A1 

[6] 

 

 

for all three 

5 Aux. Eqn.  m2 – 4m + 5 = 0   

m = 2 ± i   

Comp. Fn. is  ( )2
e cos sin= +

x

C
y A x B x    

For Part. Intgl.  try  y = 
2

 e=
x

p
y a  

Both  y′ = 2
2  e

x

a    and   y″ = 2
4  e

x

a  

Substg. into given d.e. & solving to find a : 
2

24e=
x

p

 y  

Gen. Soln.  ( )2
e cos sin 24= + +

x

y A x B x    

M1 

A1 
 

B1ft 
 

B1 

B1 

M1 
 

A1 
 

B1ft 

 

 

 

[8] 

Including solving attempt 

 

 
 

 

 

 
 

( ) 2
4 8 5  e− +

x

a a a  = 2
24e

x  

 
 

+
C P
y y   provided yC  has 2 arbitrary 

constants and  yP  has none. 

Also, A, B must be real here 
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6 (i) For  f(x) = sinh x + sin x – 3x,   

f(2.5) = – 0.851… < 0  and  f(3) = 1.159… > 0 

Change-of-sign (for a continuous fn.) 

⇒  2.5 < α  < 3   

 

M1 

 

A1 

[2] 

 

or LHS < RHS and then LHS > RHS 

 

All correctly shown/explained 

 

 (ii) sinh x + sin x = 
3 5 7 9

...
3 ! 5 ! 7 ! 9 !

 
+ + + + + 

 

x x x x

x  + 

       
3 5 7 9

...
3 ! 5 ! 7 ! 9 !

 
− + − + − 

 

x x x x

x  

 = 
5

2 ...
60

+ +
x

x  

5

2 3
60

+ =
x

x x   ⇒  (x ≠ 0)  x4 = 60 

 ⇒  α ≈ 4
60   (2.783 158 …) 

 

M1 

 
 

 

 

 

A1 

 

 

 

B1 

[3] 

 

for use of both series (attempted) 

 
 

 

 

 

 

 

 

 

(AG)  shown legitimately 

 

 (iii) Using 
5 9

2 3
60 181 440

+ + =
x x

x x   with x ≠ 0 

Solving as a quadratic in x4    

α ≈ 2.769 8 (to 4 d.p.) 

 

 [c.f. actual root 2.769 7 to 4 d.p.] 

 

M1 

 

M1 

A1 

 

 

[3] 

 

 

 
8 4

3024 181 440 0+ − =x x  

from  x4 = 2 467 584 1512− , 

    x = 4
58.854 5...  

 

 

7 (i) | z3 | = 2 2    arg(z3) = 1

4
π     

⇒ z = ( )1

12
2,   π cube-rooting modulus; arg ÷3 

Other two roots:  ( )3

4
2,   π   and  ( )17

12
2,   π    

 

B1B1 
 

M1M1 
 

A1A1 

[6] 

 
 

(in at least the first case) 

 

 (ii) Equilateral ∆ with vertices in approx. correct 

places 

Area = ( )1 2

2 3
3 2 2 sin π× × ×  = 3 3

2
 

Accept awrt 2.60 (3 s.f.)  from correct working 

B1 

 
 

M1A1 
 

 

[3] 

 
 

 

Give M1 for any correct area 
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8 (i) (a)
 

G 1 2 4 8 16 32 

1 1 2 4 8 16 32 

2 2 4 8 16 32 1 

4 4 8 16 32 1 2 

8 8 16 32 1 2 4 

16 16 32 1 2 4 8 

32 32 1 2 4 8 16 
 

 

 

 

M1 

 

A1 

 

 

 

 

[2] 

 

 

 

for mostly correct 

 

for all correct 

  (b) (S, ×63) closed, since no new elements in table 

×63 is associative (given) 

1 is the identity element 

Each (non-identity) element has a unique 

inverse: 

2 ↔ 32,  4 ↔ 16  and  8 is self-inverse 

B1 

 

B1 

 

 

B1  

[3] 

 

 

 

 

 

All must be identified 

 (ii) (a)
 

H e x y y
2
 xy yx 

e e x y y2 xy yx 

x x e xy yx y y2 

y y yx y2 e x xy 

y
2
 y2 xy e y yx x 

xy xy y2 yx x e y 

yx yx y x xy y2 e 
 

 

B1 

 

B1 

 

B1 

 

B1 

 

 

 

[4] 

 

for last 3 elements (any forms) 

 

for identity row/column (green) 

 

for easy elements (gold) or ⩾ 14 others 

 

for all 

  (b) Proper subgroups of H are (condone inclusion of 

{e} and H): 

{e, x},  {e, xy},  {e, yx}   and  {e, y, y2} 

 

 

B1B1  

[2] 

 

 

B1 Any 2; +B1 all 4 and no extras 

  (c) G and H are NOT isomorphic 

e.g. Different numbers of self-inverse elements / 

elements of order 3 

or G cyclic, H non-cyclic   or   G abelian, H non-

abelian 

B1 

 

 

 

 

[1] 

Correct conclusion WITH a valid 

reason 
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9 (i) α +β + γ = a ,  αβ +βγ +γα = b  and  αβγ  = c B1B1  

[2] 

B1 any 2 correct; + B1  all 3 correct 

 (ii) α 2 +β 2 + γ  2 = (α +β + γ )2 – 2(αβ +βγ +γα ) 

= a2 – 2b     

α 2β 2 +β 2γ 2 +γ 2α 2 = (αβ +βγ +γα )2  

         – 2αβγ (α +β + γ ) 

= b2 – 2ac   

M1 

A1 

M1 

 

A1  

[4] 

 

 (iii) ( )( )( )2 2 2α βγ β γα γ αβ− − −  

= ( )( )2 2 2
2 2 4 2αβ β γ α γ γ αβ γ αβ− − + −  

= αβγ  – 2(α 2β 2 +β 2γ 2 +γ 2α 2)  

           + 4αβγ (α 2 +β 2 + γ  2) – 8(αβγ )2   

= ( ) ( )2 2 2
2 2 4 2 8− − + − −c b ac c a b c  

= ( ) ( )2 2 2
1 4 4 2 4 4+ + − + +c a a b bc c   

= ( ) ( )
2 2

2 1 2 2+ − +c a b c  

 

Alternative method: 

 

Using  αβγ  = c, 

  

( )( )( )2 2 2

2 2 2c c c

α βγ β γα γ αβ

α β γ
α β γ

− − −

   
= − − −   
   

 

= ( )( )( )2 2 21
2 2 2α β γ

αβγ
− − −c c c  = 

( )2 2 2 2 2 31
( ) 2 4 8αβγ α β α− + −∑ ∑c c c

c

 

= 2 2 2 31 2
2 2 4 2 8

    − − + − −        
c c b ac c a b c

c
 

= etc. as above 

 
 

M1 
 

M1 
 

 

 

M1 
 

 

 

A1  

[4] 

 

 

 
 

Collecting up in terms of the 

symmetric fns. 
 

 

Use of (i)’s and (ii)’s results 
 

 

 

legitimately 

 (iv) One root is the product of the other two 

⇔  ( )( )( )2 2 2α βγ β γα γ αβ− − −  = 0 

⇔  ( ) ( )
2 2

2 1 2 2+ = +c a b c  

Must reason ⇒ and ⇐ explicitly (or together) 

 

 
 

B1 

 

[1] 

 

 
 

legitimately 
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11 (i) F3 = 2,  F4 = 3,   F5 = 5,   F6 = 8 B1  

[1] 

all 

 

 (ii) (a) p 2(x) = 1 + 
1 2

1 1

+
=

+ +

x

x x

   

p3(x) = 
2 3

2

+

+

x

x

   

p4(x) = 
3 5

2 3

+

+

x

x

 

 

B1 

 

B1 

 

B1  

[3] 

 

 

 

 

 

(AG)) 

  

  (b) pn(x) =  1

  1

 

 

+

−

+

+

n n

n n

F x F

F x F
   

Result is true for n = 2 (and 3 and 4) 

Assuming  p k(x) =   1

  1

 

 

+

−

+

+

k k

k k

F x F

F x F
   (not separate 

from their conjecture) 

pk + 1(x) = 1 +   1

  1

 

 

−

+

+

+

k k

k k

F x F

F x F
    

 =   1   1

  1   1

  

  

+ −

+ +

+ +

+

+ +

k k k k

k k k k

F x F F x F

F x F F x F
 

 = 
( ) ( ) 1   1

  1

 

 

− +

+

+ + +

+

k k k k

k k

F F x F F

F x F
 

 =   1   2

  1

 

 

+ +

+

+

+

k k

k k

F x F

F x F
 

which is the required formula with n = k + 1. 

Accept this as sufficient that proof follows by 

induction. 

 

B1 
 

B1 

 

 

 

 

M1 

 

 

 

 

M1 

 
 

A1 

 
 

[5] 

 

 

May be mentioned in later in their 

“round up” 

 

 

 

 

 

 

 

 

Collecting coeffts. into successive Fib. 

terms 
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12 (i) y = ln ( )1

2
tanh x   ⇒  21 1

2 21

2

d 1
 . sech

d tanh
=

y
x

x x
 

   = cosech x   

 

M1A1 
 

A1  

[3] 

 

 
 

(AG) 

 

 (ii) (a) Ln = 

2

2
1 cosech+∫

n

n

x dx 

= 

2

coth∫
n

n

x dx 

= [ ]ln(sinh )x    

   
sinh 2

ln
sinh

 
 
 

n

n

 = 
2 2
e e

ln
e e

−

−

 −
 

− 

n n

n n

 

≈ 
2
e

ln
e

 
 
 

n

n

, for large n,    = ( )ln e =
n

n    

 

OR   

sinh 2
ln

sinh

 
 
 

n

n

 = ( )ln 2coshn  = ( )ln e e
−

+
n n  M1  

≈ ( )ln e
n  for large n,    = n     A1  

 

 

M1 

 

 

A1 

 

A1 

 

M1 

 
 

A1 
 

 [5] 

 

 

 

 

 

 

correct integrn. 

 

 

 
 

legitimately 

 
 

 

 

 

 

legitimately 

  (b) Method (sketch or statement) to indicate that C 

asymptotically “merges” with  

the x-axis 

so that C is approximately a horizontal straight-

line from (n, 0) to (2n, 0) 

M1 

 

 

A1 

  

[2] 

 

13 (i) (a) Let y = sec –1x ,  i.e.  sec y = x   

⇒  cos y = 
1

x

  ⇒  y = 1 1
cos

−
 
 
 x

   

Then   ( )1d
sec

d

−

x

x

= 1d 1
cos

d

−
 
 
 x x

 

= 

( )
2

2

1 1

1 1 /

−

− ×

−
x

x

   

= 
2

1

1−x x

 

 

[Allow M1 A1 for valid non-“deduced” 

approaches] 

 
 

B1 

 

 

 

 

M1 

 

 

A1 

[3] 

 
 

 

 

 

 

 

(Using MF20 and the Chain Rule) 

 

 

(AG) 
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  (b)    1
sec  . 1

−∫ x  dx 

= 1

2

1
 . sec  . 

1

−

−

−

∫x x x

x x

dx 

= 1 1
 . sec cosh

− − − x x x    

 

M1 

 
 

A1 A1 

 

A1  

[4] 

 

Use of integration by “parts” 

 

 
 

 

Condone lack of  “+ C” 

 

 (ii) (a)
2

1 1

21

=

−x x

  ⇒  ( )2 2
1 2− =x x    

⇒  ( )( )4 2 2 2
2 2 1 0− − = − + =x x x x  

⇒  x = 2    and  1

4
π=y  

 

 

 

 

 
1

4
π   

 

 

 

Q (c, 0)                 2  
1

4
1

2 2

π

=

− c

 

 

    c = 
2

2
4

π

−  

 

 

 
 

M1 
 

A1 A1 

 

 

 

 

 

 

 

 

 

 

 

 

M1 A1 

 
 

A1  

 

[6] 

 

 

 

 
 

i.e.  P = ( 2 , 1

4
π ) 

 

 

 

 

 

 

 

 

 

 

 

or by ( )1

4

1
2

2

π− = −y x   &  y = 0 

  i.e.  Q = 
2

2 ,   0
4

π 
−  

 
 

 

  (b) Area ∆ = 
2

1 2 2

2 4 4 32

π π π

× × =    

Area under curve = ( )2 . ln 1 2
4

π

− +    

Then  R = ( )
2

2 2
ln 1 2

32 4

π π

− + +    

=  ( ) (8 ) 2
ln 1 2     

32

π π−
+ −  

 

B1 

 

B1 

 

M1 

 
 

A1  

[4] 

 

 

 

using (iii)’s answer and the limits  

             (1, 2 ) 

Difference in areas 

 
 

(AG) 

 


