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1 The series S is given by S =
NÐ

r=0

�N + r�2.

(i) Write out the first three terms and the last three terms of the series for S. [1]

(ii) Use the standard result
nÐ

r=1

r2 = 1
6
n�n + 1��2n + 1� to show that S = 1

6
N�N + 1��aN + 1� for some

positive integer a to be determined. [4]

2 (i) Show that there is a value of t for which AB is an integer multiple of the 3 × 3 identity matrix I,

where

A =
`

1 2 1

t 1 −t

3 2 1

a
and B =

` t − 2 0 5

12 −2 −6

3t 4 7

a
. �4�

(ii) Express the system of equations

−5x + 5Ï = 8

12x − 2y − 6Ï = 12

−9x + 4y + 7Ï = 22

in the form Cx = u, where C is a 3 × 3 matrix, and x and u are suitable column vectors. [1]

(iii) Use the result of part (i) to solve the system of equations given in part (ii). [3]

3 (i) On a single copy of an Argand diagram, sketch the loci defined by

�Ï + 2 � = 3 and arg�Ï − i� = −1
4
0. �4�

(ii) State the complex number Ï which corresponds to the point of intersection of these two loci.

[1]

4 Let In = Ó 4

0

xn
�

2x + 1 dx for n ≥ 0. Show that, for n ≥ 1,

�2n + 3�In = 27 × 4n − nIn−1. �5�

5 The curve C has equation y = 12�x + 1�
�x − 2�2

.

(i) Determine the coordinates of any stationary points of C. [4]

(ii) Sketch C. [6]

6 Solve the first-order differential equation x
dy

dx
+ 2y = 4 ln x given that y = 1 when x = 1. Give your

answer in the form y = f�x�. [8]

© UCLES 2014 9795/01/M/J/14



3

7 Let f�n� = 112n−1 + 7 × 4n. Prove by induction that f�n� is divisible by 13 for all positive integers n.

[6]

8 (i) Show that the line l with vector equation r =
`

2

−5

7

a
+ ,

`
5

−2

3

a
lies in the plane � with cartesian

equation x + 4y + Ï + 11 = 0. [2]

(ii) The plane � is horizontal, and the point P �1, 2, k� is above it. Given that the point in � which

is directly beneath P is on the line l, determine the value of k. [6]

9 (i) Explain why all groups of even order must contain at least one self-inverse element (that is, an

element of order 2). [2]

(ii) Prove that any group in which every non-identity element is self-inverse is abelian. [2]

(iii) Simon believes that if x and y are two distinct self-inverse elements of a group, then the element

xy is also self-inverse. By considering the group of the six permutations of �1 2 3�, produce a

counter-example to prove him wrong. [2]

(iv) A group G has order 4n + 2, for some positive integer n, and i is the identity element of G. Let x

and y be two distinct self-inverse elements of G. By considering the set H = �i, x, y, xy�, prove

by contradiction that G cannot contain all self-inverse elements. [5]

10 (i) Use de Moivre’s theorem to show that 2 cos 61 � 64 cos61 − 96 cos41 + 36 cos21 − 2. [5]

(ii) Hence find, in exact trigonometric form, the six roots of the equation

x6 − 6x4 + 9x2 − 3 = 0. �5�

(iii) By considering the product of these six roots, determine the exact value of

cos
�

1
18
0� cos

�
5
18
0� cos

�
7

18
0�. �3�

11 A curve has polar equation r = esin1 for −0 < 1 ≤ 0.

(i) State the polar coordinates of the point where the curve crosses the initial line. [1]

(ii) State also the polar coordinates of the points where r takes its least and greatest values. [2]

(iii) Sketch the curve. [3]

(iv) By deriving a suitable Maclaurin series up to and including the term in 12, find an approximation,

to 3 decimal places, for the area of the region enclosed by the curve, the initial line and the line

1 = 0.3. [9]
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12 (i) (a) Show that tanh x = e2x − 1

e2x + 1
. [2]

(b) Hence, or otherwise, show that, if tanh x = 1

k
for k > 1, then x = 1

2
ln

@
k + 1

k − 1

A
and find an

expression in terms of k for sinh 2x. [4]

(ii) A curve has equation y = 1
2

ln�tanh x� for ! ≤ x ≤ ", where tanh ! = 1
3

and tanh " = 1
2
. Find, in its

simplest exact form, the arc length of this curve. [10]

13 The complex number w has modulus 1. It is given that

w2 − 2

w
+ ki = 0,

where k is a positive real constant.

(i) Show that k = �
3 − �

3
�/

1
2

�
3. [8]

(ii) Prove that at least one of the remaining two roots of the equation Ï2 − 2

Ï + ki = 0 has modulus

greater than 1. [2]
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