

Cambridge International Examinations

Cambridge Pre-U Certificate

FURTHER MATHEMATICS

9795/02

Paper 2 Further Applications of Mathematics

May/June 2016

MARK SCHEME

Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

Page 1	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	02

1	(i) (ii)	$75 \pm 1.96 \sqrt{\frac{40^2}{500}} \times \frac{500}{499}$ $= (71.5, 78.5)$ No, as the Central Limit Theorem applies OR as n is large	M1 B1 A1 A1 [4] B1	$75 \pm zs$, s involving 500 z = 1.96, allow from no 500 Variance correct Both limits correct to 3sf Condone omission of $\frac{500}{499}$ "No" and mention CLT or large sample size; focus on different distributions; no irrelevancies
2	(i)	N(120, $\sigma^2 = 0.8^2 \times 1200 [= 768]$ $1 - \Phi((140 - 120)/\sqrt{768})$ $= 0.235(3)$	M1 M1 A1 A1 [4]	Normal, mean 120 or 1.20 Allow 0.8×1200 etc Both parameters correct Answer, in range $[0.235, 0.236]$ OR: $P(\ge 175)$ from N(150, 200) M1 $(175 - 150)/\sqrt{1200}$ A1 0.235(3) A2
	(ii)	$B_1 + B_2 + B_3 + B_4 - S_1 - S_2 - S_3$ $\sim N(60,)$ Variance $4 \times 1200 + 3 \times 1500 = 9300$ $\Phi\left(\frac{0 - 60}{\sqrt{9300}}\right) = \Phi(-0.622) = 0.267$	M1 M1 A1 A1	Consider $\pm (B_1 + B_2 + B_3 + B_4 - S_1 - S_2 - S_3)$ or $4B - 3S$ Normal, mean 60 Correct variance Answer, a.r.t. 0.267 [0.2699] [NB: $\Phi(-60/\sqrt{33700}) = 0.3700$ is $2/4$]
3	(i)	$\sum_{r=0}^{n} t^{r} P(r) = \sum_{r=0}^{n} t^{r} {}^{n}C_{r} p^{r} (1-p)^{n-r}$ $= \sum_{r=0}^{n} (pt)^{r} {}^{n}C_{r} (1-p)^{n-r}$ $= (1-p+pt)^{n} \mathbf{AG}$	M1 A1 A1	Use $\Sigma t^r P(R = r)$ and binomial probabilities Indicate correct final term Collect p^r and t^r and correctly obtain given expression $OR \qquad (1-p+pt)^1$, M1A1; answer, A1
	(ii)		M1	Substitute and multiply Correctly obtain given answer
		t term: $\left(\frac{3}{16}\right)^8 \left[8 \times \frac{10}{3}\right] = 4.07 \times 10^{-5}$	M1M1 A1 [5]	Select t term; method for expansion formula Answer OR: attempt to find $G'(0)$ M1 $8(\frac{3}{16})^8(\frac{10}{3} + 2t)(1 + \left[\frac{10}{3} + t\right]t)^7 A1$ $= 4.07 \times 10^{-5} A1$

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	02

4	(i)	Number of goals scored by home team is independent of number of goals scored by away team	B1 [1]	Not just <i>goals</i> independent. Extras, including conditions already implied by given Poisson distributions: B0
	(ii) (a)	$e^{-4.2n}(1+4.2n+\frac{(4.2n)^2}{2!}+\frac{(4.2n)^3}{3!})$	M1 A1 A1 [3]	Po(4.2n) implied Correct ± 1 term Fully correct expression, aef. SR Po(4.2): Fully correct formula B1
	(b)	$e^{-2.4}e^{-1.8}(1 + 2.4 \times 1.8)$ = 0.0798	M1 A1 A1 [3]	Individual Poisson distributions multiplied Correct expression [= 0.0150 + 0.0647] Answer, a.r.t. 0.080 [0.07977]
5	(i)	n large p close to ½	B1 B1 [2]	Or <i>np</i> > 5 <i>nq</i> > 5 [<i>not npq</i> > 5]
	(ii)	$\frac{24.5 - \mu}{\sigma} = \Phi^{-1}(0.8282) = 0.947$ $\frac{27.5 - \mu}{\sigma} = \Phi^{-1}(0.9697) = 1.759$	M1 A1	One standardised, = Φ^{-1} , allow σ^2 , cc, 1– errors LHS of both equations correct including signs and cc
		σ μ = 21, σ = 3.69	B1 M1 A1	Both z-values correct to 3 sf, \pm 1 in third dp Solve to find both μ and σ μ , a.r.t. 21.0; σ , in range [3.69, 3.70]
	(iii)	$q = npq/np = 21/3.694^{2} [= 0.65]$ $p = 0.35, n = 60$	M1 A1ft A1	Correct method of solution for n, p or q , allow \sqrt{npq} $npq = \sigma^2$ [not σ], ft on their npq [13.65]
		p = 0.33, n = 00	[3]	p, a.r.t. 0.350 and $n = 60$ [integer] only [not 60.0]
6	(i)	$\int_0^\infty 4x e^{-2x} e^{tx} dx = \int_0^\infty 4x e^{-(2-t)x} dx$ $= \left[\frac{4x e^{-(2-t)x}}{(t-2)} \right]_0^\infty + \int_0^\infty \frac{4e^{-(2-t)x}}{2-t} dx$ $\left[-\frac{4e^{-(2-t)x}}{(2-t)^2} \right]_0^\infty = \frac{4}{(2-t)^2}$	M1 A1 M1 A1 A1	Attempt $\int e^{tx} f(x) dx$, limits somewhere Combine into single e term Use parts, right way round Correct indefinite integral Correct final answer, ewo, allow $(t-2)^2$ but must use integral that visibly converges, or otherwise indicate the issue
	(ii)	t < 2	B1 [1]	
	(iii)	$\left[\frac{4}{(2-t)^2}\right]^3 = \frac{64}{(2-t)^6}$ $= (1 - \frac{1}{2}t)^{-6} = 1 + 3t + \frac{21}{4}t^2 + \dots$ $E(Y) = 3$	M1 A1 M1	[$M_X(t)$] ³ [Not cubed: M0A0 M1A0 M1A0] Series expansion <i>or</i> differentiate once $M'(t) = \frac{384}{(2-t)^7}, M''(t) = \frac{2688}{(2-t)^8}$ E(Y) = 3 correctly obtained or implied
		$E(Y^2)/2 = 21/4 \text{ so } E(Y^2) = 10.5$ $Var(Y) = 10.5 - 3^2 = 1.5$	M1 A1	$2 \times \text{coeff of } t^2 \text{ or } M''(0) - [M'(0)]^2$ $Var(Y) = 1.5 \text{ or exact equivalent, cwo}$
			[6]	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	02

	1		ı	
7	(i)	$\int_0^k x \frac{3x^2}{k^3} dx = \frac{3}{4}k$ $E(\frac{4}{3}X) = k, \text{ so } \frac{4}{3}X \text{ unbiased } \mathbf{AG}$	M1 A1 A1	Attempt $\int x f(x)$, correct limits $\sqrt[3]{4} k$, ae exact f Must state "unbiased"
	(ii)	$P(X \le x) = \int_0^k \frac{3x^2}{k^3} dx = \left(\frac{x^3}{k^3}\right)$	[3] B1	Needs convincing derivation
		$P(M \le m) = \left(\frac{x^3}{k^3}\right)^3 = \frac{x^9}{k^9}$	M1	$\left[F_{X}(x)\right]^{3}$
		\ /	M1	Differentiate
		$f_M(x) = 9\frac{x^8}{k^9} $ AG	A1 [4]	Full derivation of AG. Ignore other ranges
	(iii)	$\int_{0}^{k} x9 \frac{x^{8}}{k^{9}} dx = \frac{9}{10} k$ Hence $E_{2} = \frac{10}{9} M$	M1 A1 A1ft [3]	Attempt $\int x f_M(x)$, ignore limits Correct $E(M)$ If $E(M) = kc$, allow M/c
8		PE lost = $0.4g \times 3 \sin 20^{\circ}$ [4.104] Initial KE = $\frac{1}{2} \times 0.4 \times 0.5^{2}$ [0.05]	M1 M1	mgh attempted, with trig Both KEs attempted
		Final KE = $\frac{1}{2} \times 0.4 \times 2.5^2$ [1.25] Difference = Work done by friction	M1	Work/Energy principle used, no extra/missing terms
		2.9045 = 3F Therefore $F = 0.968$ N	M1	Use $\Delta E = F \times s$
		0,001	A1	Answer, a.r.t. 0.968
	•	- 🖈	[5]	[SC: Energy not used: answer B2]
9	(i)	$R(\uparrow_Q)$: $T - 1.5g = 0$ [$T = 15$]	M1	Resolve vertically for 1.5 kg mass, can be implied e.g. by $T = 15$
		$R(\uparrow_P): T\cos\theta - 1.2g = 0$ $[15\cos\theta = 12]$	M1	Resolve vertically for 1.2 kg mass
		$\Rightarrow \cos \theta = 0.8$ Distance below = 0.12/tan θ	A1	Value of $\cos \theta$ [$\theta = 36.9^{\circ}$]
		= 0.16 m	A1 [4]	Correct value of <i>h</i>
	(ii)	T=1.5g	B1	Value of <i>T used</i> [= 15]
		$R(\rightarrow_P): T \sin \theta = 1.2r\omega^2 [= 9]$ $\Rightarrow 1.5g \sin \theta = 1.2 \times 0.12 \times \omega^2$	M1 A1	Resolve horiz for P and use $r\omega^2$ or v^2/r Correct equation, and $v = r\omega$ if v used
		[$a = 7.5$] $\Rightarrow \omega = \sqrt{62.5} = 7.91 \text{ rad s}^{-1}$	A1 [4]	Answer, in range [7.9, 7.91] or $\frac{5}{2}\sqrt{10}$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	02

10	(i)	$N = 80$ $M(X): F \times 5 \sin \theta = 80 \times 2.5 \cos \theta$	B1 M1	Normal force at ground (can be implied) Moments about any point, needs both cos and sin A: $R \times 5\sin\theta = 80 \times 2.5\cos\theta$ [$R = F = 0.4N = 32$]
			3.61	$M: R \times 2.5 \sin \theta + F \times 2.5 \cos \theta = N \times 2.5 \cos \theta$
		$F \le 0.4N$	M1	Use $F \le \mu N$ or $F = \mu N$
		$\tan \theta \ge 1.25$	M1	Solve equations to obtain $\tan \theta$
		$\theta_{\min} = 51.3^{\circ} \text{ or } 51.4^{\circ}, 0.896$	A1 [5]	Correct answer, in range [51.3, 51.4] or a.r.t. 0.896
	(ii)	$F \times 5\sin \theta = (80 \times 2.5 + 750d)\cos \theta$	M1*	Moments equation with variable (<i>d</i>) $[F = 332]$
	()	Use 60° and μ to obtain	depM1	$[332 \times 5 \times 0.5 = 100\sqrt{3} + 337\sqrt{3}d]$
		$d_{\max} = 3.57$	A1	Answer, a.r.t. 3.57 or 3.56
			[3]	
11	(i)	Driving force = $32000/v$ $800 \frac{dv}{dt} = \frac{32000}{v} - 20v$	M1	Use P/v and differential equation including dv/dt
		$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{1600 - v^2}{40v} $ AG	A1 [2]	Correctly obtain AG, need to use 800 convincingly
	(ii)	$\int \frac{40v}{1600 - v^2} dv = \int dt$ $c - 20 \ln(1600 - v^2) = t$ $c = 20 \ln 1600$ [147.56]	M1 A1 A1	Separate variables and attempt to integrate Correct indefinite integral, aef Correct value of c
		$t = 20 \ln \left(\frac{1600}{1600 - v^2} \right)$ $v = 40\sqrt{1 - e^{-t/20}}$	M1 A1	Make v subject, using e, allow v^2 Correct expression for v , aef
		Tends to 40	B1	Conclusion, cwo but can get from implicit formula
			[6]	
12	(i)	$u/2$ $\sqrt{3}u/$ v x		$\left[\frac{\sqrt{3}}{2}u = w + x\right]$
		$Mom^{m} (\rightarrow): mu \cos 30 = mw + mx$	M1	C of M equation, needn't have m, ignore
		Rest ⁿ : $x - w = 0.9\sqrt{3}u/2$	3.61	signs, needs cos and sin
		Solve: $w = 0.0433u$	M1	Restitution equation, ignore signs of LHS
		Mom ^m (\uparrow): $mu \sin 30 = vm \text{ so}$ v = 0.5u	A1 B1	Correctly obtain $w = a.r.t. \ 0.0433u \ [= \sqrt{3u/40}]$ Obtain, state, or use $v = u/2$
		$\Rightarrow \text{ direction is } \tan^{-1}(0.5/0.0433)$ $= 85.05^{\circ} \text{ to } x\text{-axis}$	A1	Direction, [85.0°, 85.1°] to <i>x</i> -axis (5° or 4.9° to <i>y</i>)
			[5]	
	(ii)	$u\cos 30 = w + x$, $ue\cos 30 = x - w$	M1	One general equation
		$\Rightarrow 2w = u \cos 30(1 - e)$ but $e \le 1$	M1	Second equation, and use $e \le 1$
		so w cannot be negative	A1	Correctly deduce given conclusion
			[3]	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	02

13 (i)	Solution 1: <i>V,H</i>		
	$y = 30t \sin 50^{\circ} - 5t^{2}; x = 30t \cos 50^{\circ}$ [y = 26.2] $x = 48.2Height of slope = x \tan 10^{\circ} = 8.5$	M1A1 A1 M1 A1	Both equations attempted; both correct Correct value of x SC: If M0, $y = 26.2$ gets B1 Find height Correct answer [17.703]
	Difference = 17.7	[5]	Correct answer [17.705]
	Solution 2: , ⊥		
	$y = 30t \sin 40^{\circ} - 5t^{2} \cos 10^{\circ}$ $= 17.43$ Height above field = $y \div \cos 10^{\circ}$ $= 17.7$	M1A1 A1 M1 A1	
(ii)	Solution 1: <i>V</i> , <i>H</i>		
	$30t \sin 50^{\circ} - 5t^{2} = 30t \cos 50^{\circ} \tan 10^{\circ}$ $t = 3.916$ $PX = 30t \cos 50^{\circ} \div \cos 10^{\circ}$ $X = 76.7$	M1 A1 M1 A1	Put $y = x \tan 10^{\circ}$ and solve Correct value of t , can be implied Calculate $x \div \cos 10^{\circ}$ or $y \div \sin 10^{\circ}$ X, a.r.t. 76.7 [76.684]
	Solution 2: , ⊥		
	$Y = 30t \sin 40^{\circ} - 5t^{2} \cos 10^{\circ}$ $Y = 0 \text{ at} t = 3.916$ $X = 30t \cos 40^{\circ} - 5t^{2} \sin 10^{\circ}$ $PX = 76.7$	M1 A1 A1 A1	Y equation, allow sign/trig errors (3 terms) Correct value of t, can be implied X equation, allow sign/trig errors (3 terms) X, a.r.t. 76.7 [76.684]
	Solution 3: traj $Y = X \tan 50 - \frac{10X^2 \sec^2 50}{2 \times 30^2}$ $= x \tan 10^\circ$	M1 A1	Use trajectory equation All correct
	$PX = 180(\tan 50 - \tan 10)\cos^2 50 =$ 76.7	M1 A1	Solve for <i>X X</i> , a.r.t. 76.7 [76.684]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge Pre-U – May/June 2016	9795	02

		1	1
14 (i)	$T - mg = 0 \implies \frac{3}{0.5} \times e = 0.3g$	M1	Use N2 for equilibrium
	$\Rightarrow e = 0.5$	A1 [2]	Equilibrium extension 0.5, a.r.t. 0.500
(ii)	GPE lost = EPE gained: $3(0.5 + x) = \frac{1}{2} \frac{3}{0.5} x^2$ [= $3x^2$]	M1*	Use cons of energy, need variable on both sides,
	Solve to get $x = \frac{1+\sqrt{3}}{2} = 1.37$	depM1 A1 A1 [4]	e.g. $3(1+h) = 3(h+\frac{1}{2})^2$ or $3h = 3(h-\frac{1}{2})^2$ Obtain and solve quadratic equation Correct equation, add/subtract 0.5 etc if necessary Solve to get a.r.t. 1.37 <i>only</i> , allow surds
(iii)	$0.3\ddot{x} = 0.3g - \frac{3}{0.5}(x+e)$ $\ddot{x} = -20x$	M1 A1 B1 [3]	Use N2 including extension All correct, check signs Obtain correct value of ω^2 , no wrong working
(iv)	$x = \frac{\sqrt{3}}{2}\cos\sqrt{20}t$ $x = 0.5 \text{ at } \omega t = 0.9553 \text{ or } 5.3279$	M1 A1ft M1	Use $x = a \cos \omega t$ or $a \sin \omega t$, allow $a = 1$ a correct ft (= their (ii) – their (i)), ω from (iii) Equate to (\pm) e and use correct trig method e.g. $\frac{2}{\sqrt{20}} \cos^{-1} \left(-\frac{1}{\sqrt{3}} \right)$ or $\frac{1}{\sqrt{20}} \left(\frac{\pi}{\omega} + 2 \sin^{-1} \left(\frac{1}{\sqrt{3}} \right) \right)$
	t = 0.2136 or 1.1913 Difference = 0.978	A1 A1 [5]	One correct value of <i>t</i> Correct final answer [0.9777]