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1 Using standard summation results, show that
nÐ
r=1

�8r3 + r� � 1
2
n�n + 1��2n + 1�2. [4]

2 Find a vector which is perpendicular to both of the lines
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and hence find the shortest distance between them. [6]

3 A curve has equation y = 2x2 − x − 1

2x − 3
.

(i) Show that the curve meets the line y = k when 2x2 − �2k + 1�x + �3k − 1� = 0, and hence show

that no part of the curve exists in the interval 1
2
< y < 9

2
. [4]

(ii) Deduce the coordinates of the turning points of this curve. [4]

4 A 3 × 3 system of equations is given by the matrix equation

`−1 3 1

5 −1 2

−1 1 0

a` x
y

z

a
=
`
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16

−2

a
.

(i) Show that this system of equations does not have a unique solution. [2]

(ii) Solve this system of equations and describe the geometrical significance of the solution. [6]

5 Find the general solution of the differential equation
d2y

dx2
− 4

dy

dx
+ 5y = 24e2x. [8]

6 The equation sinh x + sin x = 3x has one positive root !.
(i) Show that 2.5 < ! < 3. [2]

(ii) By using the first two non-zero terms in the Maclaurin series for sinh x + sin x, show that ! ≈ 4
�
60.

[3]

(iii) By taking the third non-zero term in this series, find a second approximation to !, giving your

answer correct to 4 decimal places. [3]

7 (i) Find all values of z for which z3 = 2 + 2i. Give your answers in the form rei1, where r > 0 and

1 is an exact multiple of 0 in the interval 0 < 1 < 20. [6]

(ii) The vertices of a triangle in the Argand diagram correspond to the three roots of the equation

z3 = 2 + 2i. Sketch the triangle and determine its area. [3]
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8 (i) S is the set �1, 2, 4, 8, 16, 32� and ×
63

is the operation of multiplication modulo 63.

(a) Construct the multiplication table for �S, ×
63
�. [2]

(b) Show that �S, ×
63
� forms a group, G. (You may assume that ×

63
is associative.) [3]

(ii) The group H, also of order 6, has identity element e and contains two further elements x and y

with the properties

x2 = y3 = e and xyx = y2.

(a) Construct the group table of H. [4]

(b) List all the proper subgroups of H. [2]

(c) State, with justification, whether G and H are isomorphic. [1]

9 The cubic equation x3 − ax2 + bx − c = 0 has roots !, " and '.
(i) State, in terms of a, b and c, the values of ! + " + ', !" + "' + '! and !"'. [2]

(ii) Find, in terms of a, b and c, the values of !2 + "2 + '2 and !2"2 + "2'2 + '2!2. [4]

(iii) Show that �! − 2"'��" − 2'!��' − 2!"� = c�2a + 1�2 − 2�b + 2c�2. [4]

(iv) Deduce that one root of the equation x3 − ax2 + bx − c = 0 is twice the product of the other two

roots if and only if c�2a + 1�2 = 2�b + 2c�2. [1]

10 (i) Sketch the curve with polar equation r = .
1
2
+ sin 1 ., for 0 ≤ 1 < 20. [6]

(ii) Find in an exact form the total area enclosed by the curve. [4]

11 (i) The sequence of Fibonacci Numbers �F
n
� is given by

F
1
= 1, F

2
= 1 and F

n+1 = F
n
+ F

n−1 for n ≥ 2.

Write down the values of F
3
to F

6
. [1]

(ii) The sequence of functions �p
n
�x�� is given by

p
1
�x� = x + 1 and p

n+1�x� = 1 + 1

p
n
�x� for n ≥ 1.

(a) Find p
2
�x� and p

3
�x�, giving each answer as a single algebraic fraction, and show that

p
4
�x� = 3x + 5

2x + 3
. [3]

(b) Conjecture an expression for p
n
�x� as a single algebraic fraction involving Fibonacci

numbers, and prove it by induction for all integers n ≥ 2. [5]
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12 The curve C has equation y = ln�tanh 1
2
x�, for x > 0.

(i) Show that
dy

dx
= cosech x. [3]

(ii) For positive integers n, the length of the arc of C between x = n and x = 2n is L
n
.

(a) Show by calculus that, when n is large, L
n
≈ n. [5]

(b) Explain how this result corresponds to the shape of C. [2]

13 (i) (a) Given that x ≥ 1, show that sec−1x = cos−1
@
1

x

A
, and deduce that

d

dx
�sec−1x� = 1

x
�
x2 − 1

.

[3]

(b) Use integration by parts to determine Ó sec−1x dx. [4]

(ii)

x

y

O Q I

R

L

S

P

The diagram shows the curve S with equation y = sec−1x for x ≥ 1. The line L, with gradient
1�
2
,

is the tangent to S at the point P and cuts the x-axis at the point Q. The point I has coordinates

�1, 0�.

(a) Determine the exact coordinates of P and Q. [6]

(b) The region R, shaded on the diagram, is bounded by the line segments PQ and QI and the

arc IP of S. Show that R has area

ln
�
1 + �

2
� − 0�8 − 0��2

32
. [4]
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