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Question Answer Marks Part Marks 

1 (a + ib)2 = (a2 – b2) + i.2ab B1  

 (a2 – b2) = 21  and  ab = –10 M1 Comparing real and imaginary parts 

 e.g. eliminating one variable and solving for the other 
 

M1 Allow implied by e.g. a = 5, b = 2 
(or v.v.) 

 a = ± 5,  b = m  2 A1 Ignore any complex answers  

2 Σα = –2  and  Σαβ = 3  B1 Both   (αβγ  =  –7 not required) 

 α 2 + β 2 + γ 2  = (Σα)2 – 2Σαβ  = –2   M1A1 FT 

 1 real and 2 complex (conjugate) roots B1 Accept any comment that “not all 
roots are real 

 Alternative 
Form an equation with roots α 2, β 2, γ  2;   
    y3 + 2y2 – 19y – 49 = 0  

M1A1
 

 
Σα 2 = –

a
b

 = –2  
B1 FT 

 1 real and 2 complex (conjugate) roots B1 Accept any comment that “not all 
roots are real 

3(i)  
 
 
 
 
 
 
 
 
 
 
 

B3 B1  Starts at (1, 0) 
 
B1  Decreasing spiral 
 
B1  All (essentially) correct 

3(ii) 
Area = ∫ +

π

θ

2

0
22

1

)1(
1

dθ  
M1 Attempt to integrate k(1 + θ) – 2 

 
         = 

0

2

2
1

1
1 π

θ 




+
−

  
A1 Correct integration   

 
         = 








+
−

π21
112

1  or 
π

π
21+

  
A1 Correct answer 
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Question Answer Marks Part Marks 

4 
x& = 

t
t 1
−  and  2=y&   

B1 at least x&  correct 

 ( ) ( ) 412  2
222 ++−=+

t
tyx &&   

M1 attempted 

 
=

21






 +

t
t   

A1 Here or in the integral for S (2nd 
fraction of line below) 

 
S = ∫ 






 +

4

1

1 . 2 2
t

ttπ dt  
M1 Use of formula  (Ignore limits until 

final answer) 

 
= ( )∫ +

4

1

2 1 4 tπ dt 
A1 In a form ready to integrate 

 
= 

1

43

3
4 








+ ttπ    

B1 Correct integration (FT provided it 
is polynomial) 

 = 96π  A1  

5(i) 
y = tanh – 1 x  ⇔  tanh y = x = 

1e
1e

2

2

+
−

y

y

      
M1  

 1ee 22 −=+ yy xx   ⇔  )e 1(1 2 xyx −=+   M1 Identifying e2y 

 
y = tanh – 1 x = 








−

+

x
x

1
1

ln2
1   

 

A1 Legitimately obtained by taking 
logs 
 
Allow verification by substitution 
of given result 

5(ii) Method I      

41
=+

t
t   ⇒  0142 =+− tt   

M1
 
Creating a quadratic in tanh x 

 ⇒  t = 32 ±   M1 Solving  

 
Using  








−

+

t
t

1
1

ln2
1  with  t = 32 −  and/or 32 +

  

M1 (NB since | tanh x | < 1, it must be  
t = 32 − ) 

 
 x = 









+

+
×

+−

−

31
31

31
33

ln2
1  = ( )3ln2

1  
M1 By rationalising denominator or 

direct observation (possibly from 
calculator use) 

 = ( )3ln4
1   A1 Must be in this form 
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Question Answer Marks Part Marks 

5(ii) Method II      

ch
sh

 + 
sh
ch

 = 4 
M1

 

 ⇒ sh.ch4shch 22 =+  ⇒ cosh(2x) = 2 sinh(2x) M1 Conversion to double-“angles” 

 ⇒  tanh(2x) = 2
1   A1  

 
⇒  2x = 









2
1
2
3

2
1 ln  

M1 Use of tanh – 1 x formula from (i) 

 ⇒  x = ( )3ln4
1  A1 Must be in this form 

 Method III     

 
1e
1e

2

2

+
−

x

x

 + 
1e
1e

2

2

−
+

x

x

 = 4 
M1

 

 ⇒ ( ) ( ) ( )( )1e1e1e1e 222222 4 +−=++− xxxx  M1  

 ⇒ ( )1e12ee12ee 42424 4 −=++++− xxxxx  A2 A1 LHS   
A1 RHS 

 ⇒ 6 = 2 x4e  ⇒  x = ( )3ln4
1   A1 Must be in this form 

6(i) HA  y = 1            VA  x = –1   B2 B1  for each 

6(ii) 
2

2

)1(
1

+

+
=

x
x

y   or  2)1(
2

1
+

−=
x

x
y  

⇒  4

22

)1(
)1(2).1()2()1(

d
d

+
++−+

=
x

xxxx
x
y

   or   

34

2

)1(
)1(2

)1(
)1(2.22.)1(

+
−

=
+

+−+
−

x
x

x
xxx

 

M1A1 Attempted; correct unsimplified 

 
⇒  

x
y

d
d

 = 0 when  x = 1,  y = 2
1   

A2 A1 for each 

6(iii)  
 
 
 
 
 
 
 
 
 
 

3 G1 for graph in 2 bits, separated by 
a (FT) vertical asymptote and all 
positive 
 
G1  for y-intercept at (0, 1) and 
MIN. in (approx. FT) correct place 
 
G1  for correct asymptotic 
behaviour 
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Question Answer Marks Part Marks 

7(i) 
y = k x sin2x  ⇒  

x
y

d
d

 = 2k x cos2x + k sin2x   
M1 attempt using the Product Rule 

 
and  2

2

d
d

x
y

 = k x . – 4 sin2x + 2k cos2x + 2k cos2x 
M1 attempt using the Product Rule 

 = – 4y + 4k cos2x M1 for substn. into given d.e. or 
comparison 

 ⇒  k = 2 A1  

7(ii) Comp. Fn. from  m2 + 4 = 0    M1  

 ⇒  yC = A cos2x + B sin2x   A1 Or  Rcos(2x – α) etc. 

 Gen. Soln. is thus  y = A cos2x + (B + 2x) sin2x   B1 FT 

 
Then  

x
y

d
d

 = – 2A sin2x + 2(B +2x) cos2x + 2 sin2x 

       OR           = 2(B +2x) cos2x   if found after A 
(correctly) evaluated 

B1  

 Substg. in given initial conditions M1  

 A = 1  from  x = 0, y = 1  A1 FT from an incorrect xsin2x term in 
y 
 

 
B = 2

1  from x = 0, 
x
y

d
d

 = 1 

i.e. soln. is  y = cos2x + (2x + 2
1 ) sin2x   

A1 FT from an incorrect xcos2x term 
in y′ 
 
Withhold final A mark if in 
e^complex form  

8(i)(a) 
cosθ  = 

21
20

73
6212
=

×

++
  

M1A2 A1 scalar product; A1 both moduli 
 
Give B1s for correct scalar product; 
both moduli if sinθ  = … used 

8(i)(b) Substg. (2λ , – λ , 2λ ) into 6x – 2y + 3z = 35   M1  

 

⇒  λ  = 4
7  ⇒  p = 4

7
















−
2
1

2
   

A1A1 Second A1 is FT 

8(i)(c) 
SD O to Π 1 = OP cosθ  

21
20

3
4
7

××= = 5   
M1A1 A1FT 
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Question Answer Marks Part Marks 

8(i)(c) Alternative I 
(6λ, –2λ, 3λ) in plane  ⇒  36λ + 4λ + 9λ = 35   M1

 
⇒  λ = 5

7  

   ⇒  SD = λ 5326 222 =++   cao A1  

 Alternative II  

Quote formula:  SD = =
  n

d 5
326

35
222
=

++
    

     cao 

M1A1

 

8(ii) Similar working gives λ1  = 40
21−    B1  

 Planes parallel, and on opposite sides of O,  

so total distance is θcos3
40
21

4
7







 + = 2

13    

M1A1  

 Alternative I 

 Π 2 has equation  r • 
2
21

3
2

6
−=−
















   B1

 

 ⇒  SD to Π 2  is 2
3−  B1  

 Planes parallel, and on opposite sides of O,  
so distance between them is  5 – 2

3− = 2
13  

B1 FT 

 Alternative II   
Quote Sh. Dist. formula for  P ( )2

7
2
7

4
7  , , −  to Π 2 

 

M1
 
or using distance from any point in 
Π 1 or Π 2 to other plane 

 
SD = 

14
91

6412

216412
222
4
7

2
7

4
7 )()()(

=
++

++−−
 = 2

13  
A1A1  

9(i) 
Full elimination of x: I = 2

1 .sinh d
cosh .sinh

θ θ
θ θ∫   

M1  

 ⇒  I = ∫ θ2sech  dθ    A1  

 = tanhθ  (+ C)  A1  

 
= 

x
x 12 −

 (+ C)  from  
θ
θ

cosh
sinh

 
A1 (AG) 
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Question Answer Marks Part Marks 

9(ii) dsec sec tan 1
d
yy x y y
x

= ⇒ =  
M1A1  

 Use of  tan y = 1sec2 −y     M1  

 
to get   

1
1
2d

d

−
=

xxx
y

   

 

A1 AG 
 
Ignore lack of reason for taking the 
+ve sq.rt. (e.g. from +ve gradient of 
sec – 1  curve)   

9(iii) 
∫ −

2
1 1 . sec

x
x dx  

= 1

2

1sec . . d
1

1 1x    x
x x x x

− − −
−

−
∫  

= ∫
−

+
− −

1
1 sec

22

1

xxx
x

dx   

M1A2 By parts 

 
=  sec 1

x
x−−

+ 
x

x 12 −
 (+ C)   

A1 using (i) 

 Alternative  

Use  u = x1sec−  ⇒  
1

1
2d

d

−
=

xxx
u

  

 ⇒  sec tan d du u u x=   

M1
 

 
⇒  ∫ −

2
1 1 . sec

x
x dx = ∫ uusin du 

A1  

 2-stage integration by parts:  

∫ uusin du = –u cos u + ∫ ucos du  

= cos sin ( )u u u C− + +  

M1  

 Correctly turning this back into    

=  sec 1

x
x−−

+ 
x

x 12 −
 (+ C) 

A1  

10(i) 

11)1()1(
1

+
++

−
≡

+− k
C

k
B

k
A

kkk
  

M1 Correct form 

 Equating terms / substn. / cover-up   M1 Method for determining constants 

 

1
1

1
2
1

2
1

+−
+−≡

kkk
  

A1  
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Question Answer Marks Part Marks 

10(ii) 
∑∑∑∑
====

−
+

+
−

≡
+−

n

k

n

k

n

k

n

k kkkkkk 3  3  3  3  

1 
1

1 
1

1 
)1()1(

1 2
1

2
1  M1 Splitting up 

 { }11
4
1

3
1

2
1

2
1 ... −++++≡ n { }111

1
1

4
1

2
1 ... +− +++++ nnn  

  { }nn
1

1
1

4
1

3
1 ... ++++− −   

M1 Attempt at cancelling of terms 

 { } { } { }nnn
1

3
1

1
11

2
1

3
1

2
1

2
1 +−+++≡ +  A1 Correct ones clearly identifed 

 { } )1(2
1

12
1

1
11

2
1

12
1

++ −≡−−≡ nnnn    A1 Legitimately shown (AG) 

 Limit (Sn) as n → ∞ is  S = 12
1   B1 FT  

 Alternative

∑∑∑
=== +

−
−

≡
+−

n

k

n

k

n

k kkkkkkk 3  3  3  )1(
1 

)1(
1 

)1()1(
1 2

1
2
1

   

M1
 

 = ( ))1(
1

20
1

12
1

6
1

2
1 ... −++++ nn –    

 ( ))1(
1

)1(
1

20
1

12
1

2
1 ... +− ++++ nnnn   

M1 Clear listing of terms 

 All correct and ready to cancel A1  

 = )1(2
1

12
1

+− nn  A1 Legitimately shown (AG) 

 Limit (Sn) as n → ∞ is  S = 12
1  B1 FT 

10(iii) k3 > k3 – k = k(k – 1)(k + 1)  

 ⇒  
)1()1(

11
3 +−
<

kkkk
 

B1  

10(iv) 
∑
∞

=
==+>

1  
24
27

8
9

8
1

3 11 
k k

  
B1 Given result justified 

 
∑∑
∞

=

∞

=
++<++=

3  1  
8
1

38
1

3 11 11 
kk kk

∑
= +−

n

k kkk3  )1()1(
1   

M1  

 = 24
29

12
1

8
11 =++   A1 Given result justified 

11(i)(a) 
AB = 








++
++

dhcfdgce
bhafbgae

 
B1  

 det A = ad – bc  and  det B = eh – fg B1  
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Question Answer Marks Part Marks 

11(i)(b) det(AB) = (ae + bg)(cf + dh) – (af + bh)(ce + dg) 
and some attempt to multiply out 

M1  

 =   acef + adeh + bcfg + bdgh 
           – acef  – bceh  – adfg – bdgh 
= adeh – bceh – adfg + bcfg 
= (ad – bc)(eh – fg) 

A1 Legitimately shown  

11(ii) CLOSURE: A, B ∈ S  ⇒  det A = det B = 1  M1 Attempted 

 and above result   ⇒  det AB = 1  ⇒  AB ∈ S 
 
(ASSOCIATIVITY: given) 

A1 Convincing 

 
IDENTITY: I = 








10
01

∈ S  

since det I = 1.1 – 0.0 = 1 

B1 Must show why I ∈ S and not just 
say that I is the identity 

 
INVERSES: A = 








dc
ba

∈ S ⇒ A – 1  

= 







−

−
ac
bd

∈ S 

B1 for stating A – 1 (or explaining that it 
exists) 

 Since  da – (–b)(–c) = ad – bc = 1 
Hence (S,  ×M) is a group, G.  

B1 for justifying its membership of S 

11(iii)(a) det K = 1.0 – i.i = – i2 = 1  (so K ∈ S) B1  

11(iii)(b) Attempt at powers of K; K2 & K3 M1  

 
K2 = 








−1

0
i

i
  and  K3 = 








−

−
10

01
   

A1  

 
NB  K4 = 








−

−−
0  

1
i

i
  and  K5 = 








−

−
1  

0
i

i
   

⇒  K6 = I  and H has order n = 6 

A1  

11(iii)(c) e.g. The set of rotations about O  through multiples of 
60o  
 

OR (K*) = group generated by 







−

−
0

1
i

i
   

B1 FT for any n 

 Justifying the two are isomorphic B1 e.g. stating both are cyclic, etc. 
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Question Answer Marks Part Marks 

12(i) Method I 
Fn +2(θ ) ( )θ22

4
1 sin−  Fn +1(θ )  

≡ ( )22 sc + ( )4  24 2 ++ + nn sc    

 ( ) ( )2  22 22
4
1 2 ++ +− nn scsc  

M2
 
M1 all Fn terms 
M1 sin2θ  form 

 ≡ 6  24  224  226  2 ++++ ++ + nnnn scsscc  
 ( )2  22 222 ++ +− nn scsc   

A1  

 ≡ 6  26  2 ++ + nn sc  ≡ Fn +3 (θ ) A1 AG 

 Method II 
≡ 4  24  2 ++ + nn sc  ( )2  22 222 ++ +− nn sccs  

M1 Use of sin2θ  form 

 ≡ 4  24  2 ++ + nn sc  4  224  22 ++ −− nn sccs    A1  

 ≡ ( ) ( ) 4  224  22 11 ++ −+− nn sccs    M1  

 ≡ 6  26  2 ++ + nn sc  ≡ Fn +3 (θ ) A1 AG 

12(ii)(a) Use of  z = c + is  and   1−z  = c – is M1  

 czz 21 =+ −  and szz i21 =− −  A2 A1 for each 

12(ii)(b) Method I 

( ) ( )66 1 6 4 2

2 4 6

2 6 15 20

15 6

c z z z z z

z z z

−

− − −

= + = + + +

+ + +
   

M1
 

 = 2cos6θ  + 12cos4θ  + 30cos2θ  + 20 A1  

 ( ) ( )66 1 6 4 2

2 4 6

2 6 15 20

15 6

s z z z z z

z z z

−

− − −

− = − = − + −

+ − +
 

= 2cos6θ  − 12cos4θ  + 30cos2θ  − 20 

B1 FT (Must have – sign) 

 Subtracting:   
 64 ( ) ( ) 4012 4466 ++=+ −zzsc  
= 12 . 2cos4θ  + 40  

M1  

 Dividing by 8:  ( )668 sc +  = 3cos4θ  + 5 A1 AG 

 Use of cos4θ  = 2cos22θ  – 1   and   1 = cos22θ  + 
sin22θ   

M1  

 ( ) ( )( )6 6 2 2 23 3 5
8 8 82cos 2 cos 2 sin 2c s θ θ θ⇒ + = + − + +

= θθ 2sin2cos 2
4
12 +  

A1 AG 
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12(ii)(b) Method II 
cos4θ  = Re(c + is)4 M1

 

 = 4224 6 sscc +−  = ( ) ( )22224 116 cccc −+−−  

= 188 24 +− cc    

A1  

 66 sc +  = ( )326 1 cc −+  = 6426 331 cccc −+−+  M1  

 = 133 24 +− cc  A1  

 so that ( )668 sc +  = 3cos4θ  + 5 A1 AG 

 Use of cos4θ  = cos22θ  – sin22θ      
and   1 = cos22θ  + sin22θ 

M1  

 ⇒  ( )668 sc +  = 3cos4θ  + 5 
     = 3(cos22θ  – sin22θ ) + 5(cos22θ  + sin22θ ) 
⇒  66 sc + = θθ 2sin2cos 2

4
12 +  

A1 AG 

12(iii) Case for  n = 1  established in (ii) (b):  B1 noted explicitly (possibly at end)    

 
Assume  2 4 2 4 2 2

1

1cos 2 sin 2
2

k  k   

k
c s θ θ+ +

+
+ +≤  

B1 i.e. the case for  n = k 

 A clear statement of the result must be given, 
possibly within what follows 
Then  =++ + 6  26  2 kk sc

( )2  22 22
4
14  24 2 2sin ++++ +−+ kkkk scsc θ  

M1 attempt at  n = k + 1 case using (i)’s 
identity 

 ( )2 2 2 22 2 2

1

1 1cos 2 sin 2 sin 2
42

k  k   

k
c sθ θ θ + +

+
+ − +≤  M1 use of  the induction hypothesis 

(i.e. the n = k case) 

 2 2 2 22 2 2

2

11 1cos 2 sin 2 sin 2
4 22

k  k   
kk

c sθ θ θ + +

+
= + − + − 

 
 

   

M1A1 splitting up the sin22θ  term into 
two equal parts 

 2 2
2

1cos 2 sin 2
2k

θ θ
+

+≤  

Proof follows by induction since  sin22θ  ≥ 0  and 

given result that 2 2 2 2 1
2

k  k   
kc s+ ++ ≥  

A1  

 


