Cambridge Pre-U

Cambridge International Examinations

Cambridge Pre-U Certificate

FURTHER MATHEMATICS
9795/01
Paper 1 Further Pure Mathematics
May/June 2017
MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question	Answer	Marks	Part Marks
1	$(a+\mathrm{i} b)^{2}=\left(a^{2}-b^{2}\right)+\mathrm{i} .2 a b$	B1	
	$\left(a^{2}-b^{2}\right)=21$ and $a b=-10$	M1	Comparing real and imaginary parts
	e.g. eliminating one variable and solving for the other	M1	Allow implied by e.g. $a=5, b=2$ (or v.v.)
	$a= \pm 5, b=\mp 2$	A1	Ignore any complex answers
2	$\Sigma \alpha=-2$ and $\Sigma \alpha \beta=3$	B1	Both ($\alpha \beta \gamma=-7$ not required)
	$\alpha^{2}+\beta^{2}+\gamma^{2}=(\Sigma \alpha)^{2}-2 \Sigma \alpha \beta=-2$	M1A1	FT
	1 real and 2 complex (conjugate) roots	B1	Accept any comment that "not all roots are real
	Alternative Form an equation with roots $\alpha^{2}, \beta^{2}, \gamma^{2}$; $y^{3}+2 y^{2}-19 y-49=0$	M1A1	
	$\Sigma \alpha^{2}=-\frac{b}{a}=-2$	B1	FT
	1 real and 2 complex (conjugate) roots	B1	Accept any comment that "not all roots are real
3(i)		B3	B1 Starts at $(1,0)$ B1 Decreasing spiral B1 All (essentially) correct
3(ii)	$\text { Area }=\frac{1}{2} \int_{0}^{2 \pi} \frac{1}{(1+\theta)^{2}} \mathrm{~d} \theta$	M1	Attempt to integrate $k(1+\theta)^{-2}$
	$=\frac{1}{2}\left[\frac{-1}{1+\theta}\right]_{0}^{2 \pi}$	A1	Correct integration
	$=\frac{1}{2}\left(1-\frac{1}{1+2 \pi}\right) \text { or } \frac{\pi}{1+2 \pi}$	A1	Correct answer

Question	Answer	Marks	Part Marks
4	$\dot{x}=t-\frac{1}{t} \text { and } \dot{y}=2$	B1	at least \dot{x} correct
	$(\dot{x})^{2}+(\dot{y})^{2}=t^{2}-2+\frac{1}{t^{2}}+4$	M1	attempted
	$=\left(t+\frac{1}{t}\right)^{2}$	A1	Here or in the integral for $S\left(2^{\text {nd }}\right.$ fraction of line below)
	$S=2 \pi \int_{1}^{4} 2 t .\left(t+\frac{1}{t}\right) \mathrm{d} t$	M1	Use of formula (Ignore limits until final answer)
	$=4 \pi \int_{1}^{4}\left(t^{2}+1\right) \mathrm{d} t$	A1	In a form ready to integrate
	$=4 \pi\left[\frac{t^{3}}{3}+t\right]_{1}^{4}$	B1	Correct integration (FT provided it is polynomial)
	$=96 \pi$	A1	
5(i)	$y=\tanh ^{-1} x \Leftrightarrow \tanh y=x=\frac{\mathrm{e}^{2 y}-1}{\mathrm{e}^{2 y}+1}$	M1	
	$x \mathrm{e}^{2 y}+x=\mathrm{e}^{2 y}-1 \Leftrightarrow 1+x=\mathrm{e}^{2 y}(1-x)$	M1	Identifying $\mathrm{e}^{2 y}$
	$y=\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$	A1	Legitimately obtained by taking logs Allow verification by substitution of given result
5(ii)	Method I $t+\frac{1}{t}=4 \Rightarrow t^{2}-4 t+1=0$	M1	Creating a quadratic in $\tanh x$
	$\Rightarrow t=2 \pm \sqrt{3}$	M1	Solving
	Using $\frac{1}{2} \ln \left(\frac{1+t}{1-t}\right)$ with $t=2-\sqrt{3}$ and/or $2+\sqrt{3}$	M1	(NB since $\|\tanh x\|<1$, it must be $t=2-\sqrt{3}$)
	$x=\frac{1}{2} \ln \left(\frac{3-\sqrt{3}}{-1+\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}\right)=\frac{1}{2} \ln (\sqrt{3})$	M1	By rationalising denominator or direct observation (possibly from calculator use)
	$=\frac{1}{4} \ln (3)$	A1	Must be in this form

Question	Answer	Marks	Part Marks
5(ii)	Method II $\frac{\mathrm{sh}}{\mathrm{ch}}+\frac{\mathrm{ch}}{\mathrm{sh}}=4$	M1	
	$\Rightarrow \mathrm{ch}^{2}+\mathrm{sh}^{2}=4 \mathrm{sh} . \mathrm{ch} \Rightarrow \cosh (2 x)=2 \sinh (2 x)$	M1	Conversion to double-"angles"
	$\Rightarrow \tanh (2 x)=\frac{1}{2}$	A1	
	$\Rightarrow 2 x=\frac{1}{2} \ln \left(\frac{\frac{3}{2}}{\frac{1}{2}}\right)$	M1	Use of $\tanh ^{-1} x$ formula from (i)
	$\Rightarrow x=\frac{1}{4} \ln (3)$	A1	Must be in this form
	Method III $\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1}+\frac{\mathrm{e}^{2 x}+1}{\mathrm{e}^{2 x}-1}=4$	M1	
	$\Rightarrow\left(\mathrm{e}^{2 x}-1\right)^{2}+\left(\mathrm{e}^{2 x}+1\right)^{2}=4\left(\mathrm{e}^{2 x}-1\right)\left(\mathrm{e}^{2 x}+1\right)$	M1	
	$\Rightarrow \mathrm{e}^{4 x}-2 \mathrm{e}^{2 x}+1+\mathrm{e}^{4 x}+2 \mathrm{e}^{2 x}+1=4\left(\mathrm{e}^{4 x}-1\right)$	A2	A1 LHS A1 RHS
	$\Rightarrow 6=2 \mathrm{e}^{4 x} \Rightarrow x=\frac{1}{4} \ln (3)$	A1	Must be in this form
6(i)	HA $y=1 \quad$ VA $x=-1$	B2	B1 for each
6(ii)	$\begin{aligned} & y=\frac{x^{2}+1}{(x+1)^{2}} \text { or } y=1-\frac{2 x}{(x+1)^{2}} \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(x+1)^{2}(2 x)-\left(x^{2}+1\right) \cdot 2(x+1)}{(x+1)^{4}} \text { or } \\ & -\frac{(x+1)^{2} \cdot 2-2 x \cdot 2(x+1)}{(x+1)^{4}}=\frac{2(x-1)}{(x+1)^{3}} \end{aligned}$	M1A1	Attempted; correct unsimplified
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { when } x=1, y=\frac{1}{2}$	A2	A1 for each
6(iii)		3	G1 for graph in 2 bits, separated by a (FT) vertical asymptote and all positive G1 for y-intercept at $(0,1)$ and MIN. in (approx. FT) correct place G1 for correct asymptotic behaviour

Question	Answer	Marks	Part Marks
7(i)	$y=k x \sin 2 x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 k x \cos 2 x+k \sin 2 x$	M1	attempt using the Product Rule
	and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=k x .-4 \sin 2 x+2 k \cos 2 x+2 k \cos 2 x$	M1	attempt using the Product Rule
	$=-4 y+4 k \cos 2 x$	M1	for substn. into given d.e. or comparison
	$\Rightarrow k=2$	A1	
7(ii)	Comp. Fn. from $m^{2}+4=0$	M1	
	$\Rightarrow y_{C}=A \cos 2 x+B \sin 2 x$	A1	Or $R \cos (2 x-\alpha)$ etc.
	Gen. Soln. is thus $y=A \cos 2 x+(B+2 x) \sin 2 x$	B1	FT
	Then $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 A \sin 2 x+2(B+2 x) \cos 2 x+2 \sin 2 x$ OR $\quad=2(B+2 x) \cos 2 x$ if found after A (correctly) evaluated	B1	
	Subst ${ }^{\text {g }}$. in given initial conditions	M1	
	$A=1$ from $x=0, y=1$	A1	FT from an incorrect $x \sin 2 x$ term in y
	$B=\frac{1}{2} \text { from } x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$ i.e. soln. is $y=\cos 2 x+\left(2 x+\frac{1}{2}\right) \sin 2 x$	A1	FT from an incorrect $x \cos 2 x$ term in y^{\prime} Withhold final A mark if in e^{\wedge} complex form
8(i)(a)	$\cos \theta=\frac{12+2+6}{3 \times 7}=\frac{20}{21}$	M1A2	A1 scalar product; A1 both moduli Give B1s for correct scalar product; both moduli if $\sin \theta=\ldots$ used
8(i)(b)	Subst ${ }^{\text {² }}$. $\left.2 \lambda,-\lambda, 2 \lambda\right)$ into $6 x-2 y+3 z=35$	M1	
	$\Rightarrow \lambda=\frac{7}{4} \Rightarrow \mathbf{p}=\frac{7}{4}\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)$	A1A1	Second A1 is FT
8(i)(c)	$\mathrm{SD} O$ to $\Pi_{1}=O P \cos \theta=\frac{7}{4} \times 3 \times \frac{20}{21}=5$	M1A1	A1FT

Question	Answer	Marks	Part Marks		
8(i)(c)	Alternative I $(6 \lambda,-2 \lambda, 3 \lambda)$ in plane $\Rightarrow 36 \lambda+4 \lambda+9 \lambda=35$	M1	$\Rightarrow \lambda=\frac{5}{7}$		
	$\Rightarrow \mathrm{SD}=\lambda \sqrt{6^{2}+2^{2}+3^{2}}=5 \mathrm{cao}$	A1			
	Alternative II Quote formula: $\mathrm{SD}=\left\|\frac{d}{\\|\mathbf{n}\\|}\right\|=\frac{35}{\sqrt{6^{2}+2^{2}+3^{2}}}=5$ cao	M1A1			
8(ii)	Similar working gives $\lambda_{1}=-\frac{21}{40}$	B1			
	Planes parallel, and on opposite sides of O, so total distance is $3\left(\frac{7}{4}+\frac{21}{40}\right) \cos \theta=\frac{13}{2}$	M1A1			
	Alternative I Π_{2} has equation $\mathbf{r} \bullet\left(\begin{array}{c}6 \\ -2 \\ 3\end{array}\right)=-\frac{21}{2}$	B1			
	$\Rightarrow \mathrm{SD}$ to Π_{2} is $-\frac{3}{2}$	B1			
	Planes parallel, and on opposite sides of O, so distance between them is $5--\frac{3}{2}=\frac{13}{2}$	B1	FT		
	Alternative II Quote Sh. Dist. formula for $P\left(\frac{7}{4},-\frac{7}{2}, \frac{7}{2}\right)$ to Π_{2}	M1	or using distance from any point in Π_{1} or Π_{2} to other plane		
	$\mathrm{SD}=\left\|\frac{12\left(\frac{7}{4}\right)-4\left(-\frac{7}{2}\right)+6\left(\frac{7}{4}\right)+21}{\sqrt{12^{2}+4^{2}+6^{2}}}\right\|=\frac{91}{14}=\frac{13}{2}$	A1A1			
9 (i)	Full elimination of $x: I=\int \frac{1}{\cosh ^{2} \theta \cdot \sinh \theta} \cdot \sinh \theta \mathrm{~d} \theta$	M1			
	$\Rightarrow I=\int \operatorname{sech}^{2} \theta \mathrm{~d} \theta$	A1			
	$=\tanh \theta(+C)$	A1			
	$=\frac{\sqrt{x^{2}-1}}{x}(+C) \text { from } \frac{\sinh \theta}{\cosh \theta}$	A1	(AG)		

Question	Answer	Marks	Part Marks
9 (ii)	$\sec y=x \Rightarrow \sec y \tan y \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$	M1A1	
	Use of $\tan y=\sqrt{\sec ^{2} y-1}$	M1	
	to get $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x \sqrt{x^{2}-1}}$	A1	AG Ignore lack of reason for taking the + ve sq.rt. (e.g. from +ve gradient of $\sec ^{-1}$ curve)
9(iii)	$\begin{aligned} & \int \sec ^{-1} x \cdot \frac{1}{x^{2}} \mathrm{~d} x \\ & =\sec ^{-1} x \cdot \frac{-1}{x}-\int \frac{-1}{x} \cdot \frac{1}{x \sqrt{x^{2}-1}} \mathrm{~d} x \\ & =\frac{-\sec ^{-1} x}{x}+\int \frac{1}{x^{2} \sqrt{x^{2}-1}} \mathrm{~d} x \end{aligned}$	M1A2	By parts
	$=\frac{-\sec ^{-1} x}{x}+\frac{\sqrt{x^{2}-1}}{x}(+C)$	A1	using (i)
	Alternative Use $u=\sec ^{-1} x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x \sqrt{x^{2}-1}}$ $\Rightarrow \sec u \tan u \mathrm{~d} u=\mathrm{d} x$	M1	
	$\Rightarrow \int \sec ^{-1} x \cdot \frac{1}{x^{2}} \mathrm{~d} x=\int u \sin u \mathrm{~d} u$	A1	
	2-stage integration by parts: $\begin{aligned} & \int u \sin u \mathrm{~d} u=-u \cos u+\int \cos u \mathrm{~d} u \\ & =-u \cos u+\sin u(+C) \end{aligned}$	M1	
	Correctly turning this back into $=\frac{-\sec ^{-1} x}{x}+\frac{\sqrt{x^{2}-1}}{x}(+C)$	A1	
10(i)	$\frac{1}{(k-1) k(k+1)} \equiv \frac{A}{k-1}+\frac{B}{k}+\frac{C}{k+1}$	M1	Correct form
	Equating terms / substn. / cover-up	M1	Method for determining constants
	$\equiv \frac{\frac{1}{2}}{k-1}-\frac{1}{k}+\frac{\frac{1}{2}}{k+1}$	A1	

Question	Answer	Marks	Part Marks
10(ii)	$\sum_{k=3}^{n} \frac{1}{(k-1) k(k+1)} \equiv \frac{1}{2} \sum_{k=3}^{n} \frac{1}{k-1}+\frac{1}{2} \sum_{k=3}^{n} \frac{1}{k+1}-\sum_{k=3}^{n} \frac{1}{k}$	M1	Splitting up
	$\begin{gathered} \equiv \frac{1}{2}\left\{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n-1}\right\}+\frac{1}{2}\left\{\frac{1}{4}+\ldots+\frac{1}{n-1}+\frac{1}{n}+\frac{1}{n+1}\right\} \\ -\left\{\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n-1}+\frac{1}{n}\right\} \end{gathered}$	M1	Attempt at cancelling of terms
	$\equiv \frac{1}{2}\left\{\frac{1}{2}+\frac{1}{3}\right\}+\frac{1}{2}\left\{\frac{1}{n}+\frac{1}{n+1}\right\}-\left\{\frac{1}{3}+\frac{1}{n}\right\}$	A1	Correct ones clearly identifed
	$\equiv \frac{1}{12}-\frac{1}{2}\left\{\frac{1}{n}-\frac{1}{n+1}\right\} \equiv \frac{1}{12}-\frac{1}{2 n(n+1)}$	A1	Legitimately shown (AG)
	Limit $\left(S_{n}\right)$ as $n \rightarrow \infty$ is $S=\frac{1}{12}$	B1	FT
	Alternative $\sum_{k=3}^{n} \frac{1}{(k-1) k(k+1)} \equiv \frac{1}{2} \sum_{k=3}^{n} \frac{1}{k(k-1)}-\frac{1}{2} \sum_{k=3}^{n} \frac{1}{k(k+1)}$	M1	
	$\begin{aligned} & =\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots+\frac{1}{n(n-1)}\right)- \\ & \quad \frac{1}{2}\left(\frac{1}{12}+\frac{1}{20}+\ldots+\frac{1}{n(n-1)}+\frac{1}{n(n+1)}\right) \end{aligned}$	M1	Clear listing of terms
	All correct and ready to cancel	A1	
	$=\frac{1}{12}-\frac{1}{2 n(n+1)}$	A1	Legitimately shown (AG)
	Limit $\left(S_{n}\right)$ as $n \rightarrow \infty$ is $S=\frac{1}{12}$	B1	FT
10(iii)	$\begin{aligned} & k^{3}>k^{3}-k=k(k-1)(k+1) \\ & \Rightarrow \frac{1}{k^{3}}<\frac{1}{(k-1) k(k+1)} \end{aligned}$	B1	
10(iv)	$\sum_{k=1}^{\infty} \frac{1}{k^{3}}>1+\frac{1}{8}=\frac{9}{8}=\frac{27}{24}$	B1	Given result justified
	$\begin{aligned} & \sum_{k=1}^{\infty} \frac{1}{k^{3}}=1+\frac{1}{8}+\sum_{k=3}^{\infty} \frac{1}{k^{3}}<1+\frac{1}{8}+ \\ & \sum_{k=3}^{n} \frac{1}{(k-1) k(k+1)} \end{aligned}$	M1	
	$=1+\frac{1}{8}+\frac{1}{12}=\frac{29}{24}$	A1	Given result justified
11(i)(a)	$\mathbf{A B}=\left(\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right)$	B1	
	$\operatorname{det} \mathbf{A}=a d-b c$ and $\operatorname{det} \mathbf{B}=e h-f g$	B1	

Question	Answer	Marks	Part Marks
11(i)(b)	$\operatorname{det}(\mathbf{A B})=(a e+b g)(c f+d h)-(a f+b h)(c e+d g)$ and some attempt to multiply out	M1	
	$\begin{aligned} & =a c e f+a d e h+b c f g+b d g h \\ & \quad-a c e f-b c e h-a d f g-b d g h \\ & =a d e h-b c e h-a d f g+b c f g \\ & =(a d-b c)(e h-f g) \end{aligned}$	A1	Legitimately shown
11(ii)	CLOSURE: $\mathbf{A}, \mathbf{B} \in S \Rightarrow \operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{B}=1$	M1	Attempted
	and above result $\Rightarrow \operatorname{det} \mathbf{A B}=1 \Rightarrow \mathbf{A B} \in S$ (ASSOCIATIVITY: given)	A1	Convincing
	IDENTITY: $\mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in S$ since $\operatorname{det} \mathbf{I}=1.1-0.0=1$	B1	Must show why $\mathbf{I} \in S$ and not just say that \mathbf{I} is the identity
	$\begin{aligned} & \text { INVERSES: } \mathbf{A}=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \in S \Rightarrow \mathbf{A}^{-1} \\ & =\left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) \in S \end{aligned}$	B1	for stating \mathbf{A}^{-1} (or explaining that it exists)
	Since $d a-(-b)(-c)=a d-b c=1$ Hence $\left(S, \times_{\mathbf{M}}\right)$ is a group, G.	B1	for justifying its membership of S
11(iii)(a)	$\operatorname{det} \mathbf{K}=1.0-\mathrm{i} . \mathrm{i}=-\mathrm{i}^{2}=1 \quad($ so $\mathbf{K} \in S)$	B1	
11(iii)(b)	Attempt at powers of $\mathbf{K} ; \mathbf{K}^{2} \& \mathbf{K}^{3}$	M1	
	$\mathbf{K}^{2}=\left(\begin{array}{cc}0 & i \\ i & -1\end{array}\right)$ and $\mathbf{K}^{3}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$	A1	
	NB $\mathbf{K}^{4}=\left(\begin{array}{rr}-1 & -i \\ -i & 0\end{array}\right)$ and $\mathbf{K}^{5}=\left(\begin{array}{rr}0 & -i \\ -i & 1\end{array}\right)$ $\Rightarrow \mathbf{K}^{6}=\mathbf{I}$ and H has order $n=6$	A1	
11(iii)(c)	e.g. The set of rotations about O through multiples of 60° $\mathrm{OR}\left(\mathbf{K}^{*}\right)=$ group generated by $\left(\begin{array}{cc}1 & -i \\ -i & 0\end{array}\right)$	B1	FT for any n
	Justifying the two are isomorphic	B1	e.g. stating both are cyclic, etc.

Question	Answer	Marks	Part Marks
12(i)	Method I $\begin{aligned} & \mathrm{F}_{n+2}(\theta)-\frac{1}{4} \sin ^{2}(2 \theta) \mathrm{F}_{n+1}(\theta) \\ & \equiv\left(c^{2}+s^{2}\right)\left(c^{2 n+4}+s^{2 n+4}\right) \\ & \quad-\frac{1}{4}(2 s c)^{2}\left(c^{2 n+2}+s^{2 n+2}\right) \end{aligned}$	M2	M1 all F_{n} terms M1 $\sin 2 \theta$ form
	$\begin{aligned} \equiv c^{2 n+6} & +c^{2} s^{2 n+4}+s^{2} c^{2 n+4}+s^{2 n+6} \\ & -c^{2} s^{2}\left(c^{2 n+2}+s^{2 n+2}\right) \end{aligned}$	A1	
	$\equiv c^{2 n+6}+s^{2 n+6} \equiv \mathrm{~F}_{n+3}(\theta)$	A1	AG
	Method II $\equiv c^{2 n+4}+s^{2 n+4}-s^{2} c^{2}\left(c^{2 n+2}+s^{2 n+2}\right)$	M1	Use of $\sin 2 \theta$ form
	$\equiv c^{2 n+4}+s^{2 n+4}-s^{2} c^{2 n+4}-c^{2} s^{2 n+4}$	A1	
	$\equiv\left(1-s^{2}\right) c^{2 n+4}+\left(1-c^{2}\right) s^{2 n+4}$	M1	
	$\equiv c^{2 n+6}+s^{2 n+6} \equiv \mathrm{~F}_{n+3}(\theta)$	A1	AG
12(ii)(a)	Use of $z=c+$ is and $z^{-1}=c-$ is	M1	
	$z+z^{-1}=2 c$ and $z-z^{-1}=2 \mathrm{is}$	A2	A1 for each
12(ii)(b)	Method I $\begin{aligned} (2 c)^{6}=\left(z+z^{-1}\right)^{6}= & z^{6}+6 z^{4}+15 z^{2}+20 \\ & +15 z^{-2}+6 z^{-4}+z^{-6} \end{aligned}$	M1	
	$=2 \cos 6 \theta+12 \cos 4 \theta+30 \cos 2 \theta+20$	A1	
	$\begin{aligned} -(2 s)^{6}=\left(z-z^{-1}\right)^{6}= & z^{6}-6 z^{4}+15 z^{2}-20 \\ & +15 z^{-2}-6 z^{-4}+z^{-6} \\ =2 \cos 6 \theta-12 \cos 4 \theta+ & 30 \cos 2 \theta-20 \end{aligned}$	B1	FT (Must have - sign)
	$\begin{aligned} & \text { Subtracting: } \\ & \quad 64\left(c^{6}+s^{6}\right)=12\left(z^{4}+z^{-4}\right)+40 \\ & =12 \cdot 2 \cos 4 \theta+40 \end{aligned}$	M1	
	Dividing by 8: $8\left(c^{6}+s^{6}\right)=3 \cos 4 \theta+5$	A1	AG
	Use of $\cos 4 \theta=2 \cos ^{2} 2 \theta-1$ and $1=\cos ^{2} 2 \theta+$ $\sin ^{2} 2 \theta$	M1	
	$\begin{aligned} & \Rightarrow c^{6}+s^{6}=\frac{3}{8}\left(2 \cos ^{2} 2 \theta\right)+\left(-\frac{3}{8}+\frac{5}{8}\right)\left(\cos ^{2} 2 \theta+\sin ^{2} 2 \theta\right) \\ & =\cos ^{2} 2 \theta+\frac{1}{4} \sin ^{2} 2 \theta \end{aligned}$	A1	AG

Question	Answer	Marks	Part Marks
12(ii)(b)	Method II $\cos 4 \theta=\operatorname{Re}(c+\mathrm{i} s)^{4}$	M1	
	$\begin{aligned} & =c^{4}-6 c^{2} s^{2}+s^{4}=c^{4}-6 c^{2}\left(1-c^{2}\right)+\left(1-c^{2}\right)^{2} \\ & =8 c^{4}-8 c^{2}+1 \end{aligned}$	A1	
	$c^{6}+s^{6}=c^{6}+\left(1-c^{2}\right)^{3}=c^{6}+1-3 c^{2}+3 c^{4}-c^{6}$	M1	
	$=3 c^{4}-3 c^{2}+1$	A1	
	so that $8\left(c^{6}+s^{6}\right)=3 \cos 4 \theta+5$	A1	AG
	Use of $\cos 4 \theta=\cos ^{2} 2 \theta-\sin ^{2} 2 \theta$ and $1=\cos ^{2} 2 \theta+\sin ^{2} 2 \theta$	M1	
	$\begin{aligned} & \Rightarrow 8\left(c^{6}+s^{6}\right)=3 \cos 4 \theta+5 \\ & \quad 3\left(\cos ^{2} 2 \theta-\sin ^{2} 2 \theta\right)+5\left(\cos ^{2} 2 \theta+\sin ^{2} 2 \theta\right) \\ & \Rightarrow c^{6}+s^{6}=\cos ^{2} 2 \theta+\frac{1}{4} \sin ^{2} 2 \theta \end{aligned}$	A1	AG
12(iii)	Case for $n=1$ established in (ii) (b):	B1	noted explicitly (possibly at end)
	Assume $c^{2 k+4}+s^{2 k+4} \leqslant \cos ^{2} 2 \theta+\frac{1}{2^{k+1}} \sin ^{2} 2 \theta$	B1	i.e. the case for $n=k$
	A clear statement of the result must be given, possibly within what follows Then $c^{2 k+6}+s^{2 k+6}=$ $c^{2 k+4}+s^{2 k+4}-\frac{1}{4} \sin ^{2} 2 \theta\left(c^{2 k+2}+s^{2 k+2}\right)$	M1	attempt at $n=k+1$ case using (i)'s identity
	$\leqslant \cos ^{2} 2 \theta+\frac{1}{2^{k+1}} \sin ^{2} 2 \theta-\frac{1}{4} \sin ^{2} 2 \theta\left(c^{2 k+2}+s^{2 k+2}\right)$	M1	use of the induction hypothesis (i.e. the $n=k$ case)
	$=\cos ^{2} 2 \theta+\frac{1}{2^{k+2}} \sin ^{2} 2 \theta-\frac{1}{4} \sin ^{2} 2 \theta\left(c^{2 k+2}+s^{2 k+2}-\frac{1}{2^{k}}\right)$	M1A1	splitting up the $\sin ^{2} 2 \theta$ term into two equal parts
	$\leqslant \cos ^{2} 2 \theta+\frac{1}{2^{k+2}} \sin ^{2} 2 \theta$ Proof follows by induction since $\sin ^{2} 2 \theta \geqslant 0$ and given result that $c^{2 k+2}+s^{2 k+2} \geqslant \frac{1}{2^{k}}$	A1	

