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1 Without using a calculator, determine the possible values of a and b for which �a + ib�2 = 21 − 20i.

[4]

2 The equation x3 + 2x2 + 3x + 7 = 0 has roots !, " and '. Evaluate !2 + "2 + '2 and use your answer to
comment on the nature of these roots. [4]

3 (i) Sketch the curve with polar equation r = 1

1 + 1 , 0 ≤ 1 ≤ 20. [3]

(ii) Find, in terms of 0, the area of the region enclosed by the curve and the part of the initial line

between the endpoints of the curve. [3]

4 The curve C has parametric equations x = 1
2
t2 − ln t, y = 2t, for 1 ≤ t ≤ 4. When C is rotated through

20 radians about the x-axis, a surface of revolution is formed of surface area S. Determine the exact

value of S. [7]

5 (i) Use the definition tanh y = e2y − 1

e2y + 1
to show that tanh−1x = 1

2
ln

@
1 + x

1 − x

A
for �x � < 1. [3]

(ii) Solve the equation tanh x + coth x = 4, giving your answer in the form p lnm, where p is a positive

rational number and m is a positive integer. [5]

6 The curve S has equation y = x2 + 1

�x + 1�2
.

(i) Write down the equations of the asymptotes of S. [2]

(ii) Determine
dy

dx
and hence find the coordinates of any turning points of S. [4]

(iii) Sketch S. [3]

7 (i) Find the value of the constant k for which y = kx sin 2x is a particular integral of the differential

equation
d2y

dx2
+ 4y = 8 cos 2x. [4]

(ii) Solve
d2y

dx2
+ 4y = 8 cos 2x, given that y = 1 and

dy

dx
= 1 when x = 0. [7]
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8 The line l has equation r = ,d and the plane �
1
has equation r.n = 35, where

d =
`

2−1
2

a
and n =

`
6−2
3

a
.

(i) (a) Determine the exact value of cos1, where 1 is the angle between d and n. [3]

(b) Determine the position vector of the point of intersection of l and �
1
. [3]

(c) Determine the shortest distance from O to �
1
. [2]

(ii) The plane �
2
has cartesian equation 12x − 4y + 6z + 21 = 0. Determine the distance between�

1
and �

2
. [3]

9 (i) Given that x ≥ 1, use the substitution x = cosh1 to show that

Ô 1

x2
�
x2 − 1

dx =
�
x2 − 1

x
+C

where C is an arbitrary constant. [4]

(ii) By differentiating sec y = x implicitly, show that
d

dx
�sec−1x� = 1

x
�
x2 − 1

for x ≥ 1. [4]

(iii) Use integration by parts to determine Ô sec−1x
x2

dx for x ≥ 1. [4]

10 (i) Express
1

�k − 1�k�k + 1� in partial fractions. [3]

(ii) Let S
n
= nÐ

k=3
1

�k − 1�k�k + 1� for n ≥ 3. Use the method of differences to show that

S
n
= 1

12
− 1

2n�n + 1� ,

and write down the limit of S
n
as n → ∞. [5]

(iii) Given that k is a positive integer greater than 1, explain why
1

k3
< 1

�k − 1�k�k + 1� . [1]

(iv) Show that
27

24
< ∞Ð

k=1
1

k3
< 29

24
. [3]
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11 (i) (a) Given A = @
a b

c d

A
and B = @

e f

g h

A
, work out the matrix AB and write down expressions

for detA and detB. [2]

(b) Verify, by direct calculation, that det�AB� = detA × detB. [2]

Let S be the set of all 2 × 2 matrices with determinant equal to 1.

(ii) Show that �S, ×
M
� forms a group, G, where ×

M
is the operation of matrix multiplication. [You

may assume that ×
M
is associative.] [5]

(iii) (a) Show that K = @
1 i

i 0

A
is an element of G. [1]

Let H be the smallest subgroup of G that contains K and let n be the order of H.

(b) Determine the value of n. [3]

(c) Give a second subgroup of G, also of order n, which is isomorphic to H. [2]

12 For each positive integer n, the function F
n
is defined for all real angles 1 by

F
n
�1� = c2n + s2n

where c = cos 1 and s = sin 1.
(i) Prove the identity

F
n+2�1� − 1

4
sin221 × F

n+1�1� � F
n+3�1�. [4]

Let z denote the complex number c + is.

(ii) Using de Moivre’s theorem,

(a) express z + z−1 and z − z−1 in terms of c and s respectively, [3]

(b) prove the identity 8�c6 + s6� � 3 cos 41 + 5 and deduce that

c6 + s6 � cos221 + 1
4
sin221. [7]

(iii) Prove by induction that, for all positive integers n,

c2n+4 + s2n+4 ≤ cos221 + 1

2n+1 sin
221.

[You are given that the range of the function F
n
is

1

2n−1 ≤ F
n
�1� ≤ 1.] [7]
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