Cambridge Pre-U

FURTHER MATHEMATICS

Paper 1 Further Pure Mathematics

For examination from 2020
SPECIMEN PAPER 3 hours

You must answer on the answer booklet/paper.

You will need: Answer booklet/paper
Graph paper
List of formulae (MF20)

INSTRUCTIONS

- Answer all questions.
- Follow the instructions on the front cover of the answer booklet. If you need additional answer paper, ask the invigilator for a continuation booklet.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].

1 Using any standard results given in the List of Formulae (MF20), show that

$$
\begin{equation*}
\sum_{r=1}^{n}\left(r^{2}-r+1\right)=\frac{1}{3} n\left(n^{2}+2\right) \tag{4}
\end{equation*}
$$

for all positive integers n.

2 A curve has polar equation $r=\sin \theta+\cos \theta$. Find the area enclosed by the curve and the lines $\theta=0$ and $\theta=\frac{1}{2} \pi$.

3 (a) Evaluate, in terms of k, the determinant of the matrix $\left(\begin{array}{ccc}1 & 2 & 1 \\ -3 & 5 & 8 \\ 6 & 12 & k\end{array}\right)$.

Three planes have equations $x+2 y+z=4,-3 x+5 y+8 z=21$ and $6 x+12 y+k z=31$.
(b) State the value of k for which these three planes do not meet at a single point.
(c) Find the coordinates of the point of intersection of the three planes when $k=7$.

4 (a) Given that $y=\sqrt{\sinh x}$ for $x \geqslant 0$, express $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of y only.
(b) Hence or otherwise find $\int \frac{2 t}{\sqrt{1+t^{4}}} \mathrm{~d} t$.

5 Use induction to prove that $\sum_{r=1}^{n}\left(\frac{2}{4 r-1}\right)\left(\frac{2}{4 r+3}\right)=\frac{1}{3}-\frac{1}{4 n+3}$ for all positive integers n.

6 The curve C has equation $y=\frac{x+1}{x^{2}+3}$.
(a) By considering a suitable quadratic equation in x, find the set of possible values of y for points on C.
(b) Deduce the coordinates of the turning points on C.
(c) Sketch C.

7 The function f satisfies the differential equation

$$
x^{2} \mathrm{f}^{\prime \prime}(x)+(2 x-1) \mathrm{f}^{\prime}(x)-2 \mathrm{f}(x)=3 \mathrm{e}^{x-1}+1, \quad(*)
$$

and the conditions $f(1)=2, f^{\prime}(1)=3$.
(a) Determine $\mathrm{f}^{\prime \prime}(1)$.
(b) Differentiate $(*)$ with respect to x and hence evaluate $\mathrm{f}^{\prime \prime \prime}(1)$.
(c) Hence determine the Taylor series approximation for $\mathrm{f}(x)$ about $x=1$, up to and including the term in $(x-1)^{3}$.
(d) Deduce, to 3 decimal places, an approximation for $\mathrm{f}(1.1)$.

8 Consider the set S of all matrices of the form $\left(\begin{array}{ll}p & p \\ p & p\end{array}\right)$, where p is a non-zero rational number.
(a) Show that S, under the operation of matrix multiplication, forms a group, G. (You may assume that matrix multiplication is associative.)
(b) Find a subgroup of G of order 2 and show that G contains no subgroups of order 3 .

9 (a) Show that the substitution $u=\frac{1}{y^{3}}$ transforms the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=3 x y^{4}$ into

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} x}-3 u=-9 x \tag{3}
\end{equation*}
$$

(b) Solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=3 x y^{4}$, given that $y=\frac{1}{2}$ when $x=0$. Give your answer in the form $y^{3}=\mathrm{f}(x)$.

10 The line L has equation $\mathbf{r}=\left(\begin{array}{c}1 \\ -3 \\ 2\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 4 \\ 6\end{array}\right)$ and the plane Π has equation $\mathbf{r} \cdot\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right)=k$.
(a) Given that L lies in Π, determine the value of k.
(b) Find the coordinates of the point, Q, in Π which is closest to $P(10,2,-43)$. Deduce the shortest distance from P to Π.
(c) Find, in the form $a x+b y+c z=d$, where a, b, c and d are integers, an equation for the plane which contains both L and P.

11 (a) Use de Moivre's theorem to prove that $\sin 5 \theta \equiv s\left(16 s^{4}-20 s^{2}+5\right)$, where $s=\sin \theta$, and deduce that $\sin \frac{2 \pi}{5}=\sqrt{\frac{5+\sqrt{5}}{8}}$.

The complex number $\omega=16(-1+\mathrm{i} \sqrt{3})$.
(b) State the value of $|\omega|$ and find $\arg \omega$ as a rational multiple of π.
(c) (i) Determine the five roots of the equation $z^{5}=\omega$, giving your answers in the form (r, θ), where $r>0$ and $-\pi<\theta \leqslant \pi$.
(ii) These five roots are represented in the complex plane by the points A, B, C, D and E. Show these points on an Argand diagram, and find the area of the pentagon $A B C D E$ in an exact surd form.

12 (a) Let $I_{\mathrm{n}}=\int_{0}^{3} x^{n} \sqrt{16+x^{2}} \mathrm{~d} x$, for $n \geqslant 0$. Show that, for $n \geqslant 2$,

$$
\begin{equation*}
(n+2) I_{n}=125 \times 3^{n-1}-16(n-1) I_{n-2} . \tag{6}
\end{equation*}
$$

(b) A curve has polar equation $r=\frac{1}{4} \theta^{4}$ for $0 \leqslant \theta \leqslant 3$.
(i) Sketch this curve.
(ii) Find the exact length of the curve.

