MARK SCHEME for the May/June 2013 series

1347 MATHEMATICS (STATISTICS WITH PURE MATHEMATICS)

1347/01

Paper 1 (Pure Mathematics), maximum raw mark 65

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2			N	Syllabus	Paper				
			Pre-U	1347	01				
1	(i)	$1 - 14x + 84x^2$		M1 A1 [2]		1 and correct method for another term All correct, ignore extra terms			
	(ii)	Substitute $x = 1/35$		M1		Subs reasonable x into their answer			
		Get 117/175		A1	[2]	Or extract fractional equivalent			
2	(i)			M1 A1		Decreasing curve, not below <i>x</i> -axis Correct including apparently asymptotic to axis to right, allow $x \ge 0$ only			
					[2]				
	(ii)	$\ln y = \ln y$	$v = \ln 2 + 0.7x$ M1 Law of logs used correctly once		orrectly once				
		$x = \frac{1}{\ln 0}$	$\frac{1}{7}(\ln y - \ln 2)$	A1	[2]	Final answer, aef, a			
3	(i)	338 350		B1	[1]				
	(ii)	1 353 40	00	B1√	[1]	(i) × 4, f.t. from (i)			
	(iii)	338 450		B1√	[1]	(i) + 100, f.t. from (00, f.t. from (i)		
4	(i)	<i>A</i> = 27		B1		27 seen anywhere	27 seen anywhere		
		$k = \frac{1}{2} \ln 1.5$ or 0.203		M1		Rearrange and take	ln		
	(ii)			A1	[3]	Answer, aeef or a.r.	t. 0.203		
		$12 \times \left(\frac{2}{3}\right)^2$ $= 5\frac{1}{3}$		M1		Or substitute into fo	ormula		
				A1	[2]	Answer, aef, allow	5.33 or better		
5	(i)			M1		Use $b^2 - 4ac < 0$			
		$k^2 - 12k$	< 0	A1		This inequality, ae s	<i>simplified</i> f		
		$k^{2} - 12k$ $k(k - 12)$ $0 < k < 0$) < 0	M1		Method for solution	n (not "< 0, < 12")	")	
		0 < k <	12	A2	[5]	One error, A1 only			

	Pag	je 3	Mark Scheme				Syllabus	Paper	
			Pre-U – N	/lay/June	•	1347	01		
6	(i)	$\sqrt{4^2 + 2^2}$ $= 2\sqrt{5}$				Use Pythagoras			
		$=2\sqrt{5}$		M1 A1		Allow $\sqrt{20}$ or exact equivalent			
	(ii)	AC = 2	$\sqrt{5} - 3$	В1√		. /	en [if circle equati $\sqrt{5}$, $3 - 6 \div \sqrt{5}$]	on used, need to	
		$\frac{1}{2}AD \times$	$\left(2\sqrt{5}-3\right)=22$	M1 Use Δ and m		Use Δ and make	ke AD subject of formula		
		$\frac{1}{2}AD \times (2\sqrt{5} - 3) = 22$ $AD = \frac{44}{2\sqrt{5} - 3} = \frac{44(2\sqrt{5} + 3)}{11}$ $= 12 + 8\sqrt{5}$			[5]	Multiply by conjugate of $q\sqrt{r} - p$ Correct on <i>their</i> (i) if form $q\sqrt{r} - p$ used CAO, aef provided of form $a + b\sqrt{c}$ with a, b, c integer			
7		$\int_{1}^{4} x^{1/2} + [=7.439]$ Area of	B1One term corB1Fully correct			ndefinite integral pezium, e.g. integration			
		Differen	ce 0.811 (3 SF)	A1 A1		8.25 seen or im 0.811 or better,	plied final answer +ve		
				$\begin{bmatrix} 6 \end{bmatrix} \qquad \begin{bmatrix} =\frac{43}{12} - 2\ln 4 \end{bmatrix}$		$\left[=\frac{43}{12}-2\ln 4\right]$			
8	(i)	Velocity	20 (+ve <i>x</i>)	B1		One fact about	velocity		
		Initial po	osition	B1	[2]	One fact about	position		
	(ii)	(20t-25)	$(20t - 250)^2 + (15t - 500)^2$ 625t ² - 25 000t + 312 500 AG		[2]	Use Pythagoras; correctly simplify to AG, at least one intermediate line			
	(iii)	$625[t^2 -$	40t + 500]	M1		Take out factor	and halve <i>t</i> term		
		= 625[(t	$(-20)^2 + 100]$	A1		Fully correct, a	llow 625 omitted		
			m distance $\sqrt{625 \times 100}$	M1		Use <i>their</i> b			
		= 250		A1√		$\sqrt{625 \times their b}$			
		Time <i>t</i> =	20	A1√	[5]	their a			

	Page 4		Mark Scheme				Syllabus	Paper
			Pre-U – May/June 2013				1347	01
9	(i) $y'=2x-3$		M1 Differentiate		orrectly			
		= 3		A1		Obtain $m = 3$		
		x = 3 - 3	ŷy	M1		Use $\frac{-1}{m}$ and method for finding q		
				A1	[4]	Answer, ae simplified f		
			$(3y)^2 - 3(3 - 3y)$	M1		Subs <i>their x</i> or	y into quadratic	
		or $x^2 - 3$	$x = 1 - \frac{x}{3}$					
		10y = 9y	x^2 or $3x^2 - 8x - 3 = 0$	A1		This equation,	ae simplified for	m
		$\left(-\frac{1}{3},\frac{1}{9}\right)$	$\left(\frac{0}{2}\right)$	A1		Get $\frac{10}{9}$ or $-\frac{1}{3}$	(with or without	others)
				A1	[4]	Both coordinat	es, no others	
			$), \left(\frac{5}{3}, \frac{10}{9}\right)$	M1 A1√		Coords transla	ted ± 2 , x or y: M1	l
		(b) (3, 0	$), \left(-\frac{1}{3}, -\frac{10}{9}\right)$	M1 A1 $$ Coords reflect		ted, either axis: M1		
		(c) (6, 0)	$0, \left(-\frac{2}{3}, \frac{20}{9}\right)$	M1 A1√	[6]	× 2 or ÷ 2, any All $$ on <i>their</i> (combination: Mi (ii)	1
10	(i)	$\frac{\mathrm{d}^2 P}{\mathrm{d} v^2} = 6$	$5v^2 + 3 - \frac{18}{v^2}$	M1 A1	[2]	Differentiate Fully correct		
	(ii)	= 0 at 6v $3(2v^2 - 3)$	$x^{4} + 3v^{2} - 18 = 0$ 3) $(v^{2} + 2) = 0$	M1 M1		Polynomial an Method for sol	d equate to 0 ving quadratic in	v^2
		$v^2 = \frac{3}{2}$		A1		$\frac{3}{2}$ seen or impl	lied	
		v = 1.22	(474)	A1		v = 1.22 or bet	ter and nothing el	se
		<i>P</i> = 22.0	(454)	A1	[5]	P = 22.0 or bet	ter	
	(iii)	$\frac{\mathrm{d}^2 P}{\mathrm{d} v^2} = 1$	$2\nu + \frac{36}{\nu^3} > 0 \therefore \text{ minimum}$	B1	[1]		v minimum, need ical gradients or c	