## Cambridge International Examinations

Cambridge Pre-U

MARK SCHEME
Maximum Mark: 80

## Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

## MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

## Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier mark in the scheme.

## Abbreviations

AEF any equivalent form
art answers rounding to
cao correct answer only
dep dependent
FT follow through after error
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 1(i) | $S_{x x}=2881590-\frac{(5844)^{2}}{12}=35562$ | B1 |  |
|  | $S_{y y}=493502-\frac{(2268)^{2}}{12}=64850$ | B1 |  |
|  | $S_{x y}=1149981-\frac{5844 \times 2268}{12}=45465$ | B1 |  |
|  | $r=\frac{45465}{\sqrt{35562 \times 64850}} \quad=0.9467, \begin{aligned} & (=0.947) \end{aligned}$ | M1 | Calculating $r$ from their $S_{x x}, S_{y y}$ and $S_{x y}$ (numerical working or their $r$ value correct to 3 sf or better) |
|  | $r$ is very near 1 , so a good fit to (an upward sloping) line | A1 | Drawing a valid conclusion (confirming that a linear fit is appropriate, as stated in question) |
| 1(ii) | $b=\frac{45465}{35562}=1.278(=1.28)$ | M1 | Calculating $b$ from their $S_{x x}, S_{x y}$ (calculation seen or 1.27 to 1.28 ) |
|  | $\begin{aligned} a & =\frac{2268}{12}-1.278 \times \frac{5844}{12} \\ & =189-1.278 \times 487=-433.4 \end{aligned}$ | M1 | Calculating $a$ from $\Sigma x, \Sigma y$ and their $b$ (soi) or -433.0 to -434.5 for $a$ (www) |
|  | $y=1.278 x-433.4$ | A1 | Line correct with coefficients 1.27 to 1.28 and -433.0 to -434.5 used correctly |
| 1(iii)(a) | $x=652 \Rightarrow \widehat{y}=400$ | M1 | Anything rounding to 400 or 401 or FT their line |
|  | Actual price (402) is close to prediction | A1 | An appropriate comment |
| 1(iii)(b) | $x=460 \Rightarrow \hat{y}=154.5$ | M1 | Anything rounding to 154 or 155 or FT their line |
|  | Actual price (220) is substantially higher than prediction | A1 | An appropriate comment |
| 2(i) | $\begin{aligned} & X=\text { number of correct guesses } \\ & X \sim \mathrm{~B}(10,0.2) \end{aligned}$ | B1 | Parameters 10 and 0.2 seen or implied |
|  | $\mathrm{P}(X \geqslant 4)=1-\mathrm{P}(X \leqslant 3)=1-0.8791$ | M1 | Finding $\mathrm{P}(X \leqslant 3)$ or $\mathrm{P}(X \leqslant 4)$ |
|  | $=0.1209$ | A1 | [ 0.9672 or $0.0328 \Rightarrow \mathrm{M} 1, \mathrm{~A} 0$ ] |


| Question |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 2(ii) | $\mathrm{H}_{0}: \mathrm{P}($ correct guess $)=0.2$ |  | B1 | 'Probability of a correct guess' - $p$ may be defined words in answer to part (i) ' $\mathrm{H}_{0}$ : Billie is making random guesses', or equivalent, is insufficient $\Rightarrow \mathrm{B} 0$ |
|  | $\mathrm{H}_{1}: \mathrm{P}($ correct guess) $>0.2$ |  | B1 | or $>20 \%$ or $>\frac{1}{5}$ |
| 2(iii) | Assuming $\mathrm{H}_{0}: X \sim \mathrm{~B}(10,0.2)$ <br> Using tables, |  | M1 | Using $\mathrm{B}(10,0.2)$, or implied from subsequent working |
|  | $\begin{aligned} & \mathrm{P}(X \leqslant 4)=0.9672 \\ & \text { so } \mathrm{P}(X \geqslant 5)=0.0328>1 \% \end{aligned}$ |  | A1 | 0.0 .9672 or 0.0328 seen, may round to 3 sf |
|  | $\begin{aligned} & \mathrm{P}(X \leqslant 5)=0.9936 \\ & \text { so } \mathrm{P}(X \geqslant 6)=0.0064<1 \% \end{aligned}$ |  | A1 | 0.9936 or 0.0064 seen, may round 0.9936 to 3 sf |
|  | Critical value is 6 |  | B1 | cao |
| 2(iv) | $0.2+(0.5 \times 0.8)=0.6$ |  | B1 |  |
|  | In $\mathrm{B}(10,0.6)$, |  | M1 | $\mathrm{P}(X<$ their cv$)$ in $\mathrm{B}(10$, their 0.6$)$ (but not $\mathrm{B}(10,0.2)$ |
|  | $\mathrm{P}(X<6)=0.3669$ |  | A1 | 0.367 (or better) or $36.7 \%$ (or better), FT their cv and their p if possible. |
|  | This is the probability of falsely concluding that the probability of Billie being told a guess is correct is 0.2 |  | B1 | May say things like 'concluding that Billie is guessing' or 'concluding that Billie is not psychic'. Follow through wording of their $\mathrm{H}_{0}$ if reasonable. |
| 3(i)(a) | Mean $=79053 \div 20=3952.65$ |  | M1 | Method substantially correct |
|  | $=3950$ to 3sf |  | A1 | 3950 or better |
| 3(i)(b) | Median $=(4240+4200) \div 2$ |  | M1 | Method substantially correct |
|  | $=4220$ |  | A1 |  |
| 3(i)(c) | Upper quartile | $\begin{aligned} & =(5464+4910) / 2 \\ & =5187 \end{aligned}$ | M1 | Accept any value from 4910 to 5464 (incl) |
|  | Lower quartile | $\begin{aligned} & =(2428+2374) / 2 \\ & =2401 \end{aligned}$ | M1 | Accept any value from 2374 to 2428 (incl) |
|  | $\begin{aligned} \text { Interquartile range } & =5187-2401 \\ & =2786 \end{aligned}$ |  | A1 | IQR correct for their quartiles (within range) |


| Question | Answer |  | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 3(ii) | Interquartile range $=1433$ |  | M1 | 1433 soi in UQ + $1.5 \times \mathrm{IQR}$ |
|  | $3058+1.5 \times 1433=5207.5$ <br> (may also see 908.5) |  | A1 | 5207.5 or (a given length -3058 ) $\div 1433$, oe |
|  | A valid and correct calculation together with Nile and Amazon |  | M1 |  |
|  | Nile, Amazon, Mississippi, Yangtze, Yellow |  | A1 | These five and no others |
| 3(iii) | $25-(9+3+1)$ |  | M1 | Valid first step, e.g. 25 minus ... |
|  | $=12$ |  | A1 |  |
| 4(i) | $\begin{aligned} & p=(19+16+10+15) \div(30+30+20+20) \\ & =60 / 100=0.60 \end{aligned}$ |  | B1 | 0.60 or $60 \%$ |
|  | At least two correct values for their $p$ |  | M1 |  |
|  | Species | Expected number of rejected eggs | A1 | All correct for $p=0.60$ |
|  | Warbler | 18 |  |  |
|  | Thrush | 18 |  |  |
|  | Blackbird | 12 |  |  |
|  | Wagtail | 12 |  |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 4(ii) | $\mathrm{H}_{0}: p=0.6$ | B1 | Stating an appropriate $\mathrm{H}_{0}$ Allow: $p$ is independent of species, $p$ is constant, etc. <br> Follow through their expected frequencies |
|  | $\begin{aligned} & \frac{(19-18)^{2}}{18}+\frac{(16-18)^{2}}{18}+\frac{(10-12)^{2}}{12} \\ & +\frac{(15-12)^{2}}{12} \end{aligned}$ | M1 | Any one of these terms correct, for their expected frequencies |
|  | $\begin{aligned} & =\frac{1}{18}+\frac{2}{9}+\frac{1}{3}+\frac{3}{4} \\ & \text { or } 0.056+0.222+0.333+0.75 \\ & =\frac{49}{36} \text { or } 1.361 \end{aligned}$ | A1 | $\frac{49}{36}$ or $1 \frac{13}{36}$ or 1.36 (or better) |
|  | $v=2$ | B1 |  |
|  | $\Rightarrow \mathrm{cv}=4.605$ | B1 | FT their $v$ at $10 \%$ level ( $v=3 \Rightarrow \mathrm{cv}=6.251$ ) |
|  | $1.361<4.605 \Rightarrow$ accept $\mathrm{H}_{0}$ | M1 | Accept $\mathrm{H}_{0}$, or equivalent, correct for their cv and their 1.36 |
|  | Insufficient evidence to conclude that probability varies for different species | A1ft | A correct conclusion in context, for their values |
| 5(i) | Rank 1 2 3 4 5 6 <br> Time 38 39 43 44 45 48 <br> Race F F F J J F <br>        <br> Rank 7 8 9 10 11 12 <br> Time 51 52 59 62 63 67 <br> Race F F J J J J | B1 | Times ranked correctly |
|  | Rank sum $\mathrm{J}=51$ | M1 | $R_{m}=51$ or 27 |
|  | Rank sum F = 27 | A1 | $m(m+n+1)-R_{m}=$ the other of 27,51 |
|  | $W=27$ | B1 | cao |
|  | $\mathrm{H}_{0}$ : population medians same, $\quad \alpha=5 \%$ <br> $\mathrm{H}_{1}$ : different medians <br> two-sided $m=6, n=6 \Rightarrow \mathrm{cv}=26$ | B1 | cao |
|  | $27>26 \Rightarrow$ accept $\mathrm{H}_{0}$ | M1 | Accept $\mathrm{H}_{0}$ (FT their $W$ and cv) |
|  | Insufficient evidence to claim that the population medians are not the same | A1 | FT Correct conclusion in words, from correct working for their $W$ and cv. |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 5(ii) | $W \sim \mathrm{~N}\left(\frac{1}{2} m(m+n+1), \frac{1}{12} m n(m+n+1)\right)$ | M1 | Substantially correct method (but, e.g. using 120 instead of 60) |
|  | $m=n=60 \Rightarrow W \sim \mathrm{~N}(3630,36300)$ approx | A1 | $\mathrm{N}(3630,36300)$, cao |
|  | $\begin{aligned} & \alpha=5 \% \text {, two-sided } \Rightarrow z= \pm 1.96 \text { in } \mathrm{N}(0,1) \mathrm{cv} \\ & \text { tests smaller value, so }-1.96 \end{aligned}$ | B1 | 1.96 or -1.96 or $\pm 1.96$ |
|  | $3630-1.96 \sqrt{ } 36300=3256.57$ | M1 | Their 3630-1.96 $\times$ Vtheir 36300 |
|  | $\Rightarrow \mathrm{cv}=3256$ | A1 | FT their 3630,36300 and round down to an integer |
|  | If the calculated value of $W$ is greater than 3256 then accept $\mathrm{H}_{0}$, otherwise reject $\mathrm{H}_{0}$ | B1 | A valid description |
| 5(iii) | Athlete A B C D E F <br> J 67 45 63 44 62 59 <br> F 52 48 43 51 39 38 <br> $\|J-F\|$ 15 3 20 7 23 21 <br> Sign + - + - + + <br> Rank 3 1 4 2 6 5 | B2 | B1 Differences or absolute differences correct <br> B1 Their absolute differences ranked correctly |
|  | $P=18, Q=3 \Rightarrow T=3$ | B1 | cao |
|  | $\mathrm{H}_{0}$ : symmetric about $0 \quad \alpha=5 \%$ <br> $\mathrm{H}_{1}$ : times have improved one-sided $m=6 \Rightarrow \mathrm{cv}=2$ | B1 | Differences symmetric decreased, mostly positive differences cao |
|  | $3>2 \Rightarrow$ accept $\mathrm{H}_{0}$ | M1 | Accept $\mathrm{H}_{0}(\mathbf{F T}$ their $T$ and cv) |
|  | Insufficient evidence to claim that the times have improved | A1ft | Correct conclusion in words, from correct working for their $T$ and cv. |
| 6(i) | Estimate $\mu$ using $\bar{x}=\frac{3000}{100}=30$ | B1 |  |
|  | $1584 \div$ either 99 or 100 | M1 |  |
|  | Estimate $\sigma^{2}$ using $s^{2}=\frac{1584}{99}=16$ | A1 |  |
| 6(ii) | Some schools have more classes than others With this method you cannot get two classes from the same school | B1 | Sampling units are classes not schools |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 6(iii) | $n=100 \text { is large enough that we may use } \mathrm{N}(0,1)$ $z= \pm 1.645$ | B1 | 1.645 or $\pm 1.645$ |
|  | $30 \pm 1.645 \times \sqrt{ }(16 / 100)$ | B1 | 16/100 soi (FT their 30 and their 16) |
|  | $=30 \pm 0.658$ | M1 | Correct method for their $z$ (or $t$ ) value |
|  | $=(29.3,30.7)$ | A1 | Confidence limits correct (29.342 and 30.658), 3 sf or better |
|  | $t$-distribution not necessary because sample size is not small | B1 | $n=100$ |
| 6(iv) | Variance has been estimated (and sample is small) so a $t$-distribution is appropriate Use $t$-distribution with 4 degrees of freedom | B1 | $t(4)$ used |
|  | $\mathrm{P}(\bar{Y}>\mu+6.5)=\mathrm{P}\left(T>\frac{6.5}{\sqrt{(27.5 / 5)}}\right)$ | B1 | $\sqrt{ }(27.5 / 5)$ used |
|  | $\begin{aligned} & =\mathrm{P}(T>2.77) \\ & =1-0.975 \quad \text { approx, } \end{aligned}$ | M1 | Substantially correct method |
|  | $=0.025 \quad$ as given | A1 | 2.77 and then showing how this leads to the given answer of 0.025 |

