

Fransition Joments

- <u>Theory</u> +
- · Notes from Past Papens.

Iransitian Elements

Found between Group 2 & Group 13.	
A transition dement is a d-block element that firms one on more stable ions with a pantially shield d-subshalls	
* Scandium And Zinc are NOT transition elements,	
because Scandium (Sc) forms only One Ion (Sc $^{*+}$) and this has no electrons in its 3d subshell ~	
the electronic configuration of Sc^{2+} is (Ar) $3d^{\circ}4s^{\circ}$.	
Zinc forms only any i.on $(2n^{2+})$ and this has a complete $3d$ -subshell-	
the electronic configuration of $(2n^{2t})$ is (Ar) $3d^{10}4s^{\circ}$.	
* Electronic Configurations	
$21 + Scandium (Sc) - 15^{2}25^{2}25^{6}35^{2}35^{6}45^{2}36^{1}$ or [Ar] $3d' 45^{2}$	< Exception
22 Titanium (Ti) - [Ar] $4s^2$ $3d^2$	
23 Vanadium $(v) - [Ar] 4s^2 3d^3$	JS Contraction of the second s
24 [*] Chromium (Cr) - [Ar] 45 ¹ 3d ⁵ ← Exception	2.5 2h
25 Mangaunese CMn) - $[Ar]$ $4s^2$ $3d^5$	35 31 32
26 Iron (Fe) - [Ar] $4s^2$ $3d^6$	as an ad af
27 Cobalt (Co) ~ [Ar] $4s^2 3d^7$	
$\frac{1}{28} \text{ Nickel (Ni)} - \text{ [Ar] } 4s^2 3d^8$	Q.
29 * Copper (Cu) - [Ar] 45' $3d^{10} \leftarrow Exception$	•
30 Zine (Zn) - [Ar] $4s^{2} 3d^{10}$	
When transition elements form ions, their atoms loose electrons from the	
As sub-shell first, followed by 3d-electrons.	
Nuclear Change Increases	
Atomic Radi decreases	
A H ₁₁ Increases	
Group 1 2	
3	
S- Block d- Block	P- Block
f - block	
Lanthanoid	
Actinoid	
Physical Properties of Innsition Elements	
All transition elements are metals	
ightarrow Strong mettalic bonds result from small size and close packing of atoms.	
→ Nigher mething points boiling point & densities than s-block metals.	
→ Smaller atomic Radius than s- block metals.	
-> Electrical Cahacity of S-Block elements is higher than that of a transition element (with the excention of a)	
\rightarrow First ionisation energy of S-block element is lower than that of a transition element	

Variable Oxidation States

_						-					
	Sc	Ti	\vee	(r	Mn	Fe	Lo	Ni	Cu	Zn	\rightarrow The most common oxidation state is +2.
					+7						Stability of the +2 state increases across the new
				+6	+6	+6					3d ejections become increasingly handler to remove
			+5	+5	+5	+5					as the nuclear charge increases across the puriod.
		+4	+4	+4	+4	+4	+4				[Ar] 4a'' As''
	+3	+3	+3	+3	+3	+3	+3	+3	+3		
		+2	+2	+2	+2	+2	+2	+2	+2	+2	-> The maximum oridation state at the start of the now
									+		involves all the 4s and 3d ēs in the atom

\rightarrow Higher Oxidation states are found in compounds with "O" or	"F"
EXAMPLE: $Cr O_q^{2-}$ Chromate CII) ion	
Mn 04 Manganate (Ⅶ) ion	
~	
* Co-ordination Compounds	* Coordination Complex
A molecular compound resulting from the combination	It is the species enclosed in square bracket.
of two or more stable molecular compounds and	It contains in it a contral metal atom or ion to which a fixed

 Notains its identity in the solid state as well as in
 number of neutral molecules on ions caluable of donobing

 a solubion of the properties are totaly different from the
 electron hairs are linked with co-ordinate bonds.

 constituants fresent ·
 Jusse one Known as Ligands.

 Example :
 K4 [Fe (CN)g], [Cu (NH3)4]SO4, [Co (NH3)6]Cl3

 rolecules of NH3 are linked with cu²⁺ ion by co-ordinate bonds.

* Coordination Num	ber	
The coordination nu	umber of a compl	ex is-the
total number of co-ord	ination bonds form	red by the
ligands with the metal	, atom on ion in the	complex .
EXAMPLE: [Ag(CN)2]	[(0 (CN)5]2-	[Fe (CO)s]

5

Linear (Ağ (CN⁻) (N) Complex

Coordination No: 2

5

J Central Metal Atom

* Nature of Co-ordination Complex
1) Cabionic Complex
A complex carrying a net hostive change
$\frac{1}{2} \sum_{\alpha, \alpha} \left[C_{\alpha}(\alpha H_{\alpha})_{\alpha} \right]^{3+} \int \left[N_{\alpha}(\alpha H_{\alpha})_{\alpha} \right]^{2+1}$
2) Anionic Comhex
A complex conveying a not negative change on the square bracket.
<u>example</u> , [Ag (CN2)] , [Fe (CN)6] ³⁻
3) Neubral Complex
A complex which has no net change.
<u>ехаторие</u> , [Ni (со)л], [Со (NHa)3C13]

Ligands (Electron doman species)

They are the electron donor molecules on ions which may be either noutral on anionic and are linked to the central transition metal atom on ion by co-ordinate bonds.

The ligands are also known as dentates.
Ligands have been classified into the following types:-
1. Unidentate on Monodantate Ligends -
They have one donor atom with a lone pair of electrons and it may be either neutral or anionic.
Neutral: H2Ö, NH3

Anionic: OH, CN, X, CH3COO, NO3, NO2, ONO, NO2, SCN, NCS.

2. Bidentate digands -

These and the ligands which have two donor atoms and have the ability to link with control atom/ion at two positions.

examples,						
ethanedioate ion /	1,2 - diaminoethate Cen)					
oxlate ion Cox)		ľ	Vouming:-			
0 <i>c</i> - <i>o</i> -	CH2 - NH2	<u></u>	· continue ·			
∠-0 └-0 ⁻	$\frac{1}{CH_2 - NH_2}$			•		
u O	$CH_2 - NH_2$	Г	1	£ 1 4]
0			Ligand	Formula	Name of digand	
3 <u>Polydontate ligands</u>			chloride	CLT	Chloro	
9 regunal agains						
A Ligand with more th	ion two donof atoms.		cyanide	CN	Cyano	
,			1 10	OH		
<u>example</u> ,			hydroxide	UH	hydroxo	
Ethylenedianine tetraacetate io	~ (EDT 8) /		water	H ₂ 0	aqua	
Chexadentate digand	.)		- 0		Cupie c	
0	•	c	unmonia	NH3	ammine	
⁻ о - с - сн ₂ - о - с - сн ₂ - о - с - сн ₂	. , сн ₂ – С – О [~]		Oxide	0 ²⁻	OXO	
	CH2 - C - 0-		UNICE			
0.0.00	11 O					
* Calculation of oxidation	Number of metal atom					
example ① [Fe (CN6)] ³⁻	example @ [Cu (NH3)4] ²⁷ ex	carviple (13) Kq [Fe CCN)6]	exampie	🖲 [со Синз) с] СІз		
x + 6 (-1) = - 3	χ+4(o) = 2	(+1x4) + x + 6)6 =	0	X+6(0)+3(-1)	$\lambda - D$	
x + 6 (-1) 5		C(124)+ 2 + E116 -	0] = 0	
x= +3	X'= +2	X≈ t2_		x-3=0		
	· · · · · · · · · · · · · · · · · · ·			~		
				X= +3		
* <u>Calculation of charge</u>	- on the complex ion					
$\left[Ag (NH_3)_2 \right]^2$						
+1 + 2(0) = x						
x= +1						
[Ag(NH3)2]+1						
[Hy(NH3)2]						

	I	
1. Structwral Isomerism	2 · Steroisomers	
0) <u>Ionisphion isomerism</u>	a) Geometrical Isomers (cis-trans)	
xami (compounds which have different ions in solubion although they have the same composition)	The isomer in which wimmilian ligands occupy adjecent positions	is rellered to as
$\underbrace{E_{3}}_{E_{3}} (i) \left[C_{0} (NH_{3})_{5} Br \right] SO_{4} \longrightarrow \left[C_{0} (NH_{3})_{5} Br \right]^{2^{4}} + SO_{4}^{2^{-}}$	cis isomer and the isomer in which isimmilian ligands occupy ophosite	•
$\left[C_0 (NH_3)_5 SO_4 \right] Br \longrightarrow \left[C_0 (NH_3)_5 SO_4 \right]^+ + Br^-$	tans isomet.	
(ii) [Pt (NH)4 CI2] Brz & [Pt (NH5)4 Br2] CI2		
	Example (i) cis-hlabin é trans-hlabin	<u>3d- diagram</u>
1) Huderte les union en alter incontra	באמתוף נון כט קומאיז ב יז אאז קרמאזי	
b) Hydrate Isomerian or solute isomerian	CINH3 CINH3	
Compounds which have the same molecular composition but differ	Pt Pt	
in the number of walls interested freezent an ligands.)	Clcl	
$E_{q_2}(i) \left[Cr(H_20)_c \right] Cl_3$	cis-hlalin towns-hlalin	
$\left[\operatorname{Cr} (H_2 0)_5 (I)\right] (I_2 \cdot H_2 0$		
$[C_{f}(H_{2}0)_{4}C_{2}]C_{1}\cdot 2H_{2}0$	The properties of these geometrical isomers one slightly diffrent.	
	• <u>Cis-hladin</u> has been used a anti-cancer drug. A acts by binding to sections	
C) <u>Co-ordination Isomenism</u>	of DNA in cancer cells , preventing cell devision.	
Occurs in those complex compounds which contain both cationic & anionic complexes	N	
and isomers differ with respect to the distribution of regards in these complexes.		
<u>[g (i) [CO (NH3)6][Cr (CN)6]</u> and [Cr (NH3)6][CO (CN)6]		
Cationic Amionic Complex Complex		
Complex Complex	cis trans	
	en-ethane-1,2-diamine 0x-oxalate	
d) <u>Linkage leomerism</u>		
Jhis type of isomorism occurs when more than one atom in a	(b) Optical Isomerism	
Monodantate Ligand may function as a donor atom. (ite ambidentate ligand)	It is arown by those complex compounds whose molecules are not sucher imposable on 4	their mittor images. Jhese isomers can
Eq. (i) $\left[C_0(NH_3)_S NO_2\right]^{2+}$ and $\left[C_0(NH_3)_S O_N0\right]^{2+}$	Potate the plane of palonised light. Cto the right - clockwise on to the lift anticlock-wis	se)
	These optical isomers have identical physical and chemical properties except over been	wour
NH5 15 012 CO CO CO NH3 NH3 NH3	towards the plane of helanised light.	
NH3 T NH3 NH3 NH3 NH3	Jhese minor images and also termed as <u>enantioners</u> .	
$(ii) \left[(r(H_20)_{S} SCN)^{2^{+}} and \left[(r(H_20)_{S} NCS)^{2^{+}} \right]^{2^{+}}$] Octahedral Complexes that are bi-dentate legands share	outical isometism
		,
	i Mirror	
	(ji) l,2 diaminaethane	
	(1) 1,2 automotionate 2 ²⁺ 2 ⁺	
	on on	

 Visc
 State
 Min
 Constant

 Mean
 Min
 Constant
 Constant
 Constant

 Constant
 Constant
 Constant
 Constant
 Constant

 Min
 Constant
 Constant
 Constant
 Constant
 Constant

 Min
 Constant
 <t

Substitution of Ligands

The ligands in a complex ion can be extrangul whatly on protody, for other ligands. This is called a substitution reaction. This happers if the new complex is more state than the original complex. Examples: (i) Copper (u2+ (aq) is blue, octahedral hexaguacopher(II) ion ie [Gu(H2O),] $^{2^{\ast}}$ - On Adding NaOH (04) Jess Stable More Stable $\left[\left(L_{\mu} \left(H_{2} O \right)_{\ell} \right)^{2+} (aq) + 2 O H^{-} \longrightarrow \left[\left(L_{\mu} \left(H_{2} O \right)_{4} \left(O H \right)_{2} \right] (G) \right]$ Blue See table on last hage Pale Blue bht for summary of reactions. insoluble in excess NaOH(99) - On Adding NH3 (ag) $\left[\left(\mathrm{Lu}\left(\mathrm{H}_{2}\mathrm{O}\right)_{2}\right]^{2^{4}}\left(\mathrm{ag}\right) + 2\mathrm{NH}_{3}\left(\mathrm{ag}\right) \longrightarrow \left[\left(\mathrm{Lu}\left(\mathrm{OH}_{2}\right)\left(\mathrm{H}_{2}\mathrm{O}\right)_{4}\right](5) + 2\mathrm{NH}_{4}^{+}\left(\mathrm{ag}\right)\right]^{2^{4}}\right]$ few drops blue hht $\left[\left(\operatorname{LL}(OH_2)(H_0)_4\right](5) + 4\operatorname{NH}_3(\operatorname{aq}) \longrightarrow \left[\left(\operatorname{LL}(\operatorname{NH}_3)_4(H_2O)_2\right](\operatorname{aq}) + 2\operatorname{H}_2O(l) + 2\operatorname{OH}^-(\operatorname{aq})\right)\right]$ then in excess Royal Blue Solution - On Adding Concentrated HCI drop by drop. $\left[(\operatorname{Lu}(\operatorname{H}_{2}\operatorname{O})_{2}\right]^{2^{+}}(\operatorname{aq}) + 4(\sqrt{-}(\operatorname{aq}) \longrightarrow \left[\operatorname{Lu}(\operatorname{L}_{4})_{2}\right]^{2^{-}}(\operatorname{aq}) + 6\operatorname{H}_{2}\operatorname{O}$ Blue Jellow, solution Jetrahednal • CE ligands are larger than H2O and are charged. · The complex is more stable if the shape changes to tetrahedral from octahedral · Adding excess water reverses the reaction (ii) Cobalt Co²⁺ aqueous solution is pink, octahedral hexagua.cobalt (I) ion i.e [Co (4:0),c]²⁺ pink. → On Adding NaOH (aq) $\left[\left(L_{0}\left(H_{2}0\right)_{6}\right]^{2+}\left(\alpha q\right) + 20H^{-}\left(\alpha q\right) \rightarrow \left[L_{0}\left(OH_{2}\right)\left(H_{2}0\right)_{4}\right] C^{s}\right) + 2H_{2}O(C)$ hink solution due pht soluble in excess of NaOH → On Adding NH3 (aq) $\left[\left(\circ \left(\mathsf{NH}_{2} \mathsf{O}_{6} \right)^{2^{+}} \left(\circ \mathsf{Q} \right) + \mathsf{G} \mathsf{NH}_{3} \right) \right]^{2^{+}} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{2} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{2} \left(\circ \mathsf{Q}_{3} \right) \right]^{2^{+}} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{2} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{3} \left(\circ \mathsf{Q}_{3} \right) \right)^{2^{+}} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{3} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{3} \left(\circ \mathsf{Q}_{3} \right) \right)^{2^{+}} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{3} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{3} \left(\circ \mathsf{Q}_{3} \right) \right)^{2^{+}} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{3} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{3} \left(\circ \mathsf{Q}_{3} \right) \right)^{2^{+}} \left(\circ \mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{3} \left(\mathsf{Q}_{3} \right) + \mathsf{G} \mathsf{H}_{3} \left($ (in exces) yellow solution hink solution -> On Adding Concentrated HCL $\left[\left(O\left(H_{2}O\right)_{6}\right]^{2^{+}}\left(aq\right) + 4\left(I^{-}\left(aq\right)\right) \longrightarrow \left[\left(O\left(I_{4}\right)^{2^{-}}\left(aq\right)\right) + 6H_{2}O\left(I\right)\right]^{2^{+}}\left(aq\right) + 6H_{2}O\left(I\right)\right]^{2^{+}}\left(aq\right) + 6H_{2}O\left(I\right)$ blue solution, hink solution tetrahedral

* Valence Bond Theory of Co-ordination Compounds

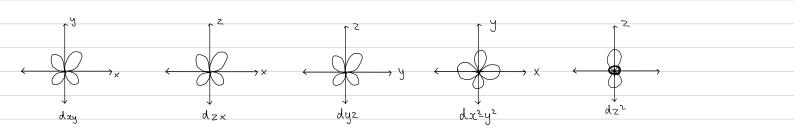
Main Features : -

1) In the formation of Metal - ligand bonds, the electron hairs are donated by the ligands to the metal ion-

(2) The central metal atom /ion in the complex makes available a number of empty orbitals for the formation of Co-ordinate bonds with suitable ligands.
(3) The vacant atomic orbitals of the central metal atom /ion hybridise to give a new set of equivalent orbitals called hybrid orbitals.

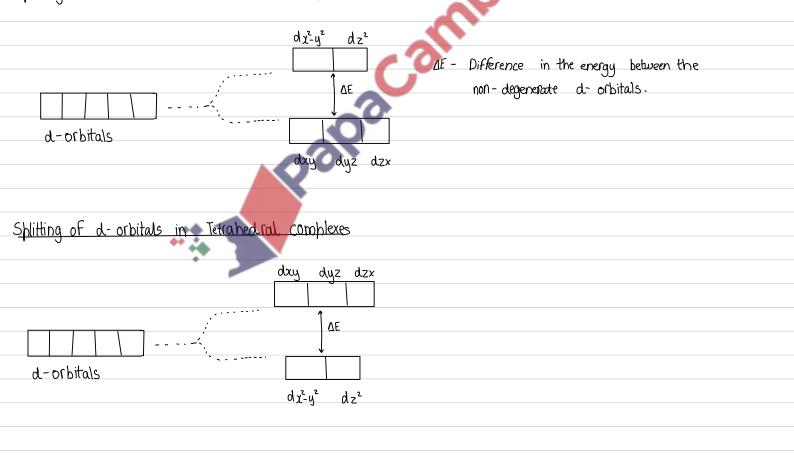
These hybrid orbitals decide the nature of Geometry of the Complex.

Co-ordination Number	Hy bridisation	Geometry	
4	j sh ³	Tetrahedral	
4	dsh ²	Square Planar	
5	sh ³ d	Trigonal Bipyramidal	
6	sh^3d^2 , d^2sh^3	Octabedral	


In the d-orbitals that are involved in the process of hybridisation can be either from the inner d-orbitals. i.e (n-i) d orbitals or outer d-orbitals i.e nd orbitals. The corresponding complexs are named either as inner orbital complexes or outer orbital complexes.

Examples: cis [Cr (NH3)6]3+	Inner orbital complex Oct	rahedral.
	3d	4s 4h
(r (z= 24)	1 1 1 1 1	
	3d.	45 4h
(r ^{3†}	1111	
		d ² sh ³ hybridisation
	3d	<u>45</u> <u>4h</u>
$\left[C_{r}\left(NH_{3}\right)_{6}\right]^{3+}$	1 1 1 ×× ××	XX XX XX
	T T	
**	NH ₃ NH ₃	NH3 NH3 NH3 NH3
**		
ciis $\left[Fe(CN)_{6}\right]^{4-}$	Inner orbital complex Octa	hedral
	3d	<u>45</u> 4h
Fe (z = 26)	11 1 1 1	
	3d	<u>45</u> 4h
fe ²⁺	111111	
	3d	4 <u>5</u> 4h
	11 11 11	
		d^2sh^3 hybridisation
	3d	- -
$\left[fe(CN)_{6} \right]^{4}$	11 11 11 ××	
	ſ	
	CN	I CN' CN' CN' CN'

ciis [NiClq] ²⁻ Tetahedral Sh ³ hybridisation
<u> 3d 45 4</u> h
N; $(z = 28)$ 11 11 1 1 1
3d. 4s 4h
Ni^{2t} $1\sqrt{1}\sqrt{1}$ $1\sqrt{1}$
Sh ³ hybridisation
o de la construcción de la constru
$\left[Fe(CN)_{6} \right]^{4} $ $\left[1 \mid 1 \mid 1 \mid 1 \mid x \times \right] \times $
CN° CN° CN° CN°
civ s [Ni CCN)4] ²⁻ Square Planar dsp ² hybridisation
$\begin{bmatrix} N_{i} (CN)_{4} \end{bmatrix}^{2} 1 1 1 1 1 x x x x x x x x x x x x x x $
CN CN CN CN
Limitations: 1) It cannot explain the color of complexes
2) It fails to make distinction between strong and weak ligands.
Limitations: 1) It cannot explain the color of complexes 2) It fails to make distinction between strong and weak ligands. (NH3, CN=) (Cl-ions)
D OX


Crystal Field Theory

In a transition metal atom or ion, all the five d-orbitalls have the same energy which means that d_{xy} , d_{yz} , d_{zx} , $d_{x^2-y^2}$, d_{zz} oribats are degenerate orbitals.

When ligands approach the metal atom / ion repulsion will arise between the electrons present in d-orbitals and lone pairs on the ligands. The shapes of diffrent orbitals reveal that dx^2-y^2 and dz^2 onbitals have lobes along the axes and will point in the Same direction along which the ligands approach. However the other 3 d orbitals (dxy, dzy, dzx) have lobes inbetween the axes. Consequently, these lobes do not face the ligands so effectively. As a result, the repulsive force interactions between the ligands and orbitals $dx^2-y^2 \int dz^2$ will be higher than the repulsion in other 3 d orbitals. Therefore the orbitals are split into different sets on the basis of energy.

Splitting of d-orbitals in Octahedral complexes

Color of Complexes:

·So when light shines on the solution containing [Cu (H2O)6]²⁺ complex, an electron absorbs this DE amount of energy. It uses this energy to lump into the higher of the two non degenerate energy levels. The color of the complex which appears is complementry to the color which is absorbed . If the radiation corresponding to orange colour are absorbed, the complex appears to be blue. . In S-block elements the energy gap is too large Cto be able to absorb visible light), there fore they aren't coloured • Eq. A solution of CuSOq is blue because red and yellow wavelengths one absorbed. NOTE : Exact energy diffrence (AE) between the non degenerated d-orbitals in a transition metal ion is affected by many factors, like identity of ligands that surround the transition metal ion $[(u(H_20)_6]^{2+} \rightarrow \text{light blue}$ [Cu (NH3)4 (H2O)2]²⁺ → Deep blue / Royal Blue Size of DE via different, thus amound of energy being absorbed by electrons jumping white higher orbitals is different. Therefore a different COLOF is absorbed from visible light, so a different colour is seen. *Weak field Ligands (cause only small amount of splitting): $I = Br < S^2 < SCN < CI < F < OH < C_2O4^2 < O^2 < H_2O <$ **B**3b₃ * Strong field ligands (Responsible for large splitting) $NH_3 < er < NO_2^- < CN^- < CO$ * Stability Constant - Kstab The stability constant of a complex ion is the equilibrium constant for the formation of the complex ion in a solvent from it's constituent ion / molecules. $E_{xam} hle: \left[G_{u} (H_{2}0)_{6} \right]^{2+} + 4 NH_{3} (aq) \rightleftharpoons \left[G_{u} (NH_{3})_{4} (H_{2}0)_{2} \right]^{2+} + 4 H_{2} O (i)$ Pale Blue Deep Blue $K_{\text{Stab}} = \underbrace{\left[\left[\left(\left(N_{H_{2}} \right)_{4} \left(H_{2} \right)_{2} \right]^{2+} \right] \right]}_{\left[\left[\left(\left(\left(H_{2} \right)_{6} \right)^{2+} \right] \left[N_{H_{3}} \left(\left(\left(A_{2} \right)_{6} \right)^{2+} \right] \right] \right]} \right]$ NOTE: Water doesn't appear in the equilibrium expression because it is langely in excess, that is concentration is regarded as being constant. \simeq dm¹² mol⁻⁴ Units of Kstab = <u>Crooldm³</u> Craotan3) (moldun3) 4

Answers to Past Pahers

Explain why transition metals are coloured

When light shines on the solution of a complex compound of a transition metal and electron absorbs the Delta E amount of energy. It uses this energy to jump into the higher of the two non-degenerate d subshell energy levels. The colour of the complex compound noticed is complimentary to that of which light is absorbed.

Explain why the colour of these two complex compounds are different The size of Delta E is different forso the amount of energy being absorbed by electrons jumping up to the higher orbitals is different therefore a different colour is absorbed from visible light so a different colour is seen

Explain why the colour of these two complex compounds are different The size of Delta E is different so the amount of energy and wavelengths being absorbed by electrons jumping up to the higher orbitals is different therefore a different colour is absorbed from visible light so a different colour is seen

Chemical properties of transition metals Variable oxidation states Can act as catalyst Form complexes Form coloured ions

Suggest why transition elements show variable oxidation states and their compounds whereas S Block elements like calcium not

This is because electrons of similar energy are in the valance shell orbitals (the 4s and 3D orbitals have similar energies)

Suggest whyS Block elements do not have coloured compounds This is because in the SS Block the elements energy gap is too large to be able to absorb visible light

Define complex

A compound formed by central metal ion surrounded by one or more Ligands

Define ligand

A ligand is a species that contains a lone pair of electrons that forms a covalent dative bond with a metal ion

Define bidentate ligand

Bidentate ligands means it donates to 2 pairs of electrons to form 2 dative covalent bond with the central metal ion

Explain why copper (II) is a coloured compound and copper one salts are not coloured backspace In copper 2 the d orbital is split and so an electron is promoted it absorbs light and its complimentary colour is seen Copper 1 salts are usually white or colourless as there is no gap in the upper orbital (full 3D sub shell)

What is the density of transition metals more than that of S Block elements ? I said has a larger Ar and a smaller atomic radii

Why is the melting point of transition metals more than that of S Block elements? As the Cations are more strongly attracted as there are more delocalised electrons

The higher the Kstab value the more the equilibrium is to the right hand side and more of that product will be formed

		1				
Ligand	 ໂພ (ແ)		Co (11)		ļ	
H ₂ D	$[(4120)_{6}]^{2+}$	blue	[COCH20)6] ^{2t}	PinK		
NH3 (ag) (drohs)	[(U (H20)4 (OH)2] (S)	Pale blue	[Co (H20)4 (OH)2]			
NH3 (ag) (excess)		Royal Blue	[Co (NH3)6]2+	Yellow Sol ⁿ		
0H ⁻ (M9)	$[(u(H_20)_4(OH)_2]$	Pale Blue	[(0 (H20)4 (0H)2] (S)	Blue pht		
	$\left[CuClq \right]^{2-}$	Yellow Soln	[CoCI4]2-	Blue Soln		
Copper Chemistr	y					
· Reaction with hyd	noxide ions.					
5	[H₂0)6] ²⁺ + 0H ⁻ →	[Cu (Hz0)4	(он) ₂] + 2 H ₂ 0			
	blue solution	·				
	Ammonia Solution.		•			
→ IN A small cumo	unt				.0	
	$[b_6]^{2+}$ + 2NH ₃ \rightarrow	[Cu (H20)4 (OH)2] + 2NH4+		.0	
	blue solution	hale blue h			.07	
→ Excess amm	onia.					
	$(OH)_2 + 4 NH_3 \longrightarrow$	[((NH3)4 (.H20)2] 2+ 2H20 -	+20н-		
		deep blue				
 Reaction with 	Chloridle lons					
[(4 (H20	$(a_{1})_{6}^{2+} + 4c_{1}^{-} = [a_{1}c_{14}]_{6}$] ²⁻ + 6H ₂ O		0		
Ыш	e so). Green	sol				
	0		0			
	•					
	** ••					

(ii) Cobalt	
Co ²⁺ aqueous solution is bink, octahedral hexagua.cobalt (I) ion i.e [Co (Hz0)] ²⁺ hink,	
- On Adding NaOH (04)	
$\left[\left(c_0 \left(H_2 O \right)_6 \right]^{2+} (aq_1) + 20H^- (aq_2) \rightarrow \left[\left(c_0 \left(O H_2 \right) \left(H_2 O \right)_4 \right] (s) + 2H_2 O (t) \right] \right]$	
hink solution due pht	
soluble in excess of NaOH	
- On Adding NH3 (aq)	
$\left[C_{0} (H_{2}0)_{6} \right]^{2t} (aq) + 6 N H_{3} (aq) \longrightarrow \left[C_{0} (NH_{3})_{6} \right]^{2t} (aq) + 6 H_{2} O (l)$	
pink solution (in excess) yellow solution	
0	
-> On Adding Concentrated HCL	
$\left[\left(O\left(H_{2}O\right)_{6}\right]^{2^{t}}\left(a_{9}\right) + 4\left(I^{-}\left(a_{9}\right) \longrightarrow \left[\left(O\left(I_{4}\right)^{2^{-}}\left(a_{9}\right) + 6H_{2}O\left(I\right)\right)\right]^{2^{t}}\right]$	
hink solution blue solutions	
tetrahedral	