

Cambridge AS & A Level

CHEMISTRY Paper 2

Topical Past Paper Questions

+ Answer Scheme

2015 - 2021

Appendix A

Answers

$1.\ 9701_s17_ms_21\ Q{:}\ 1$

(a)	The mass of a molecule OR the (weighted) average / (weighted) mean mass of the molecules	1
	Relative / compared to $\frac{1}{12}$ (the mass) of <u>an atom</u> of carbon–12	1
	OR on a scale in which a carbon–12 atom / isotope has a mass of (exactly) 12 (units)	
(b)(i)	3	1
(b)(ii)	8	1
(b)(iii)	$C_3H_8O + 4\frac{1}{2}O_2 \rightarrow 3CO_2 + 4H_2O$	1
(b)(iv)	OH AND propan-2-ol/2-propanol	1
	OH AND propan-1-ol / 1-propanol	1
	Alternative answers (any two):	
	OH AND butan-1-ol / 1-butanol	
	On AND Butan - 1-01/1-butanor	
	OH AND butan-2-ol / 2-butanol	
	On AND butan-2-on 2-butanoi	
	OH AND (2–)methylpropan–1–ol / (2–)methyl–1–propanol	
	2 And (2)meany in Strict proparior	
	OH AND (2–)methylpropan–2–ol / (2–)methyl–2–propanol	
(b)(v)	correct conversions of data to SI/consistent units $p = 100\ 000\ ;\ V = 20\times 10^{-6}\ ;\ T = 393$	1
	calculation of <i>n</i> (= <i>pVIRT</i>) from M1 values	1
	$n = \frac{100 \times 10^3 \times 20 \times 10^6}{8.31 \times 393}$	
	calculation of mass m (= $n \times Mr$) AND answer correct to 3sf m = $6.12 \times 10^{-4} \times 60 = 0.0367$ (g)	1
	Alternative answer for using C ₄ H ₁₀ O: $m = 6.12 \times 10^{-4} \times 74 = 0.0453$ (g)	
	Total:	10

 $2.\ 9701_m16_ms_22\ Q\hbox{:}\ 2$

(a) (i)	$\frac{27.30}{1000} \times 0.020 = 5.46 \times 10^{-4} \text{(mol)}$	[1]
(ii)	(i) × 6 =3.28 × 10 ⁻³ (mol)	[1]
(iii)	(ii) $\times \frac{250}{25.00} = 3.28 \times 10^{-2} \text{(mol)}$	[1]
(iv)	M_r of FeCO ₃ =55.8 + 12.0 + 3(16.0) = 115.8 (iii) × M_r (FeCO ₃) = 3.79 g	[1] [1]
(v)	$\frac{\text{(iv)}}{5.00} \times 100\% = 75.9\%$	[1]
(b) (i)	$2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$ species balancing	[1] [1]
(ii)	$SnCl_2(aq) + 2HgCl_2(aq) \rightarrow SnCl_4(aq) + Hg_2Cl_2(s)$	
	SnCl ₂ AND 2 state symbols	[1] [1]

3. $9701 _{\rm w}16 _{\rm ms}_{\rm 2}1$ Q: 1

(a)	6 × 10 ⁻³ (mol)		1	1
(b)	NaOH + HC $l \rightarrow$ NaC l + H $_2$ O		1	1
(c)	6 × 10 ⁻³ (mol)		1	1
(d)	4 × 10 ⁻³ (mol)		1	1
(e)	4 × 10 ⁻³ (mol)		1	1
(f)	1 × 10 ⁻³ (mol)		1	1
(g)	170		1	1
(h)	28(.0) Si/silicon		1	2
		Total:		9

4. 9701_w16_ms_22 Q: 1

(a)	0.04 OR 4×10 ⁻²	1
(b)(i)	$Na_2CO_3 + 2HCI \rightarrow 2NaCI + CO_2 + H_2O$	1
(b)(ii)	0.00075 OR 7.5 × 10 ⁻⁴	1
(b)(iii)	0.0015 OR 1.5 × 10 ⁻³	1
(b)(iv)	$0.015 \text{OR} 1.5 \times 10^{-2}$	1
(b)(v)	$0.025 \text{OR} 2.5 \times 10^{-2}$	1
(b)(vi)	$0.0125 \text{OR} 1.25 \times 10^{-2} \text{OR} 0.013 \text{OR} 1.3 \times 10^{-2}$	1
(b)(vii)	40	1
	Ca / calcium	1
	Total:	9

$5.\ 9701_s17_ms_22\ Q{:}\ 1$

(a)	atomic number	nucleon number	number of electrons	number of protons	number of neutrons	symbol		2
		6		3	3		1	
						⁵⁸ ₂₆ Fe ³⁺	1	
(b)(i)	OR mass of one mol (of relative / compared to	o 1/12 (the mass) of (a C-12 (atom / isotope) has (a mass of exa mol of C-12 OR	ctly) 12 (units)			1	-
(b)(ii)	(10.0129×19.78)+(80.22x) = 10.8						1
	x = 10.9941							
						Total:		6

$6.\ 9701_s20_ms_23\ Q:\ 2$

(a) (b)	on a scale in which a C-12 OR M1 mass of one mol (of at M2 relative / compared to in which one mol C-12 (atc % abundance of ⁶³ Cu = 72 % abundance of ⁶⁵ Cu = 27 M1 correct algebraic expression	1/1/2 (the mass) of (an atom of) C-12 OR 2 (atom / isotope) has (a mass of exactly) 12 (oms) of an isotope 1/12 (the mass) of 1 mol of C-12 OR om / isotope) has a mass of (exactly) 12 g 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5%	:
(c)(i)	% ab of 63 Cu = x ($x/100$ OR % ab of 65 Cu = x (1- x)/	× 63) + $((1-x)/100 \times 65) = 63.55$ so $x = 72.5$ $100 \times 63) + x/100 \times 65) = 63.55$ so $x = 27.5$ ice of other isotope by 100- x	
(c)(i)			
(c)(ii)		r arrangement of spheres labelled as positive nded by electrons and clearly labelled as 'del	3
(c)(iii)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ ²	4s1 OR (1s2) 2s2 2p6 3s2 3p6 4s1 3d10	1
(d)(i)	,	0.002 (mol S ₂ O ₃ 2 ·) CuSO ₄ in 250cm ³ O ₄) = 0.002 mol CuSO ₄ in 25cm ³	2
	so 0.02 mol CuSO ₄ in 250	lcm ³	
(d)(ii)	M1 amount of CuSO ₄ in 10.68 g of CuSO ₄ ·xH ₂ O	7.98 / (159.6) = <u>0.05</u> (mol)	3
	M2 amount of H ₂ O in 10.68 g of CuSO ₄ ·xH ₂ O	(10.68 – 7.98) / 18 = 2.7 / 18 =) <u>0.15</u> (mol)	
	10:00 g 01 04004 XI 120		

7. $9701_{w20_{ms}_{2}}$ Q: 1

(a)(i)	positive / + on left AND negative / - on	n right	1		
	charge on plate electrons charge on plate				
(a)(ii)	straight line vertically upwards from the property charge on plate electrons source	ne source	1		
(b)(i)	type of orbital s p	d	3		
	number of orbitals 4 9	5			
(b)(ii)	4s	wilde	;		
(b)(iii)	5				
(b)(iv)	Award one mark for each correct bullet point – max 3 marks nuclear charge increases extra electron(s) in inner shell / n=3 /d-subshell / d- orbital				
	increased shielding (of 4s electrol (overall) similar nuclear attraction	ons by electrons in n=3 / 3 rd shell / 3d) n (for outer electron)			
(c)	answer in terms of subatomic particles same (number of) protons AND different (number of) neutrons	les in the nucleus			

8. 9701_s19_ms_23 Q: 1

(a)(i)	All have the same nucleon number OR same sum / total number of protons + neutrons	1
(a)(ii)	(different) number of protons, neutrons and electrons	1
(b)	M1 x/100 □ 32 + (100-x/100 □ 34) = 32.09	3
	M2 $(32x + 3400 - 34x) = 3209$ so $x = 95.5$	
	M3 S ³² 95.5% AND S ³⁴ 4.5%	
(c)(i)	1s	1
(c)(ii)	8 or	1
(c)(iii)	M1 3p	2
	M2 It is less attracted to the nucleus (so takes less energy to lose) OR It is the highest energy orbital (which is occupied) / it is in the highest energy orbital	
(d)(i)		1
(d)(ii)	M1 (in S, the electron is removed from the) 2 electrons in (3)p orbital OR a pair of electrons in (3)p (orbital / sub-shell)	2
	M2 (paired electrons) repel	

9. $9701_s16_ms_21$ Q: 1

(a)			-4!-						
(-)	name of element	nucleon no.	atomic no.	no. of protons	no. of neutrons	electrons	overall charge		
	lithium	6	3	3	3	2	+1		
	oxygen	17	8	8	8	10	-2		
	iron	54	26	26	28	24	+2		
	chlorine	35	17	17	18	17	0		
(b)	line straight line (curving proton line c) up labelle	d 'protons		ection than e	electron curv	/e		
(c) (i)	Group 16/6 AND Big (owtte) in	- 60	g differenc	e/big gap	/big jump/j	ump in incre	ease/jum	o in difference after 6tl	h IE
(ii)	increases (a	cross perio	d) due to	increasing	attraction (d	of nucleus fo	or electror	ıs)	
	due to increa						vel		
(iii)	electron (pai (Y has a) pa			p orbital/a	a (3) <u>p</u> <u>orbita</u>	<u>l</u> is full ORA			
(iv)	(1s ²)2s ² 2p ⁶ 3	s²3p⁵							
(,									
(d) (i)	0.56(%)								
	0.56(%) (A×0.56)+	(86×9.86)	+ (87×7.0 100	8×88)+(0	32.58) = 87.	71			
(d) (i)		(86×9.86)	+ (87×7.0 100	0)+(88×8	32.58) = 87.°	71			

 $10.\ 9701_s16_ms_22\ Q:\ 1$

	name of element	nucleon number	atomic number	number of protons	number of neutrons	number of electrons	overall charge	
	boron	10	5	5	5	5	0	[1
	nitrogen	15	7	7	8	10	-3	[1
	lead	208	82	82	126	80	+2	[1]
	lithium	6	3	3	3	2	+1	[1]
(b) (i)	Group 17/VII/	7						
		rease/big diffe	rence/big gap	/big jump/jum	p in increase/j	ump in differen	ce after 7th IE	[1
(ii)	increases acro	ss period due	to increasing a	attraction (of nu	cleus for electr	ons)		[1]
	due to increas same (outer) s	ing nuclear cha hell/energy le	arge/atomic/p vel	roton number A	AND constant/	similar shielding	g/	[1]
(iii)	1s ² 2s ² 2p ⁶ 3s ² 3	p ⁴						[1]
(c) (i)	(100 – 99.76 –	0.04=) 0.2						[1]
(ii)	0.2x + (99.76	× 16) + (0.04 × 100	<u>17)</u> = 16.004	1			19	[1]
	x = 18							[1]
					_			
			205		jo.			

11. 9701_S15_ms_21 Q: 1

(0)						
(a)		sub-a	tomic particle	relative mass	relative charge	
			neutron	1	0	[1]
			electron	1/1836	–1	[1]
			proton	1	+1	[1]
(b)	(i)	RAM =	relative to 1/12	e mass of the isotope <u>s</u> /2 the mass of an atom of (exactly) 12 (units)	an atom(s) f ¹² C/on a scale where a	[1] an [1]
		isotope	number w	n the same number of pr ith different mass numbe nucleon number	rotons/atomic number/pers/numbers of	proton [1]
	(ii)	(0.89×	74)+(9.37×76	$(1)+(7.63\times77)+(23.77\times7)$	78)+(49.61×80)+(8.73×	×82) [1]
		= 79.04	4 (2 d.p.) AND	Se		[1]
(c)	(i)	Te 47.4 128 0.370 0.370	52.6 35.5 1.48 0.370	car	10,	[1]
		1	4 so	o EF = TeC <i>l</i> ₄ mpirical Formula Mass :	= 270 so MF = Te	[1]
(c)	(ii)	Covale	ent AND simple	/molecular		[1]
		low me	elting point/rea	ction with water		[1]
	(iii)		+ $3H_2O \rightarrow H_2T_0$ Cl_4 + $2H_2O \rightarrow$			[1]
(d)	(i)	White f	/orange flame fumes/solid /green gas dis	appears		[1] [1] [1]
	(ii)		iant/lattice AN imple/molecul	D ionic ar AND covalent		[1] [1]
		(of sod	ium/Na and ch	nce in electronegativity alorine / Cl/ Cl ₂) (indicate	·	[1]
				erence (indicates sharing rces (between molecules	g/covalency) with (weak) s) ora	[1]

12. 9701_w17_ms_22 Q: 1

(a)	Cl Cl Cl trigonal planar (trigonal) pyramid(al) 120° 100–107°	4
	3 marking points for each box: diagram, name and shape. for each box: all three correct = 2 marks two correct = 1 mark	
(b)(i)	SiC ¼ simple / molecular AND Van der Waals' / id-id forces / London / dispersion forces / IMFs	1
	NaCl ionic OR giant	1
	bonding (in NaC l) strong <u>er</u> (than forces in SiC l_4) owtte	1
(b)(ii)	SiCI ₄ has more electrons ORA	1
	stronger Van der Waals' / id-id forces / London / dispersion forces / IMFs	1
(b)(iii)	; cj.	1

13. 9701_s17_ms_21 Q: 2

(a)	substance	type of bonding	type of lattice structure	
	copper	metallic	giant/metallic	
	ice	covalent OR hydrogen(-bonding) / H(-bonding)	hydrogen-bonded / simple / molecular	
	silicon(IV) oxide	covalent	giant (molecular) / macromolecular	
	iodine	covalent	simple / molecular	
	sodium chloride	ionic	giant / ionic	
(b)(i)	hydrogen bonding	*		
(b)(ii)	H-bond between O and H of different	molecules		
	minimum three partial charges (in a row)	over two H ₂ O molecules,		
•	minimum three partial charges (in a row) i.e.: either ⁸⁻ O—H ⁸⁺ ⁸ -O—H ⁸⁺	-		
•	i.e.: either ⁸⁻ O—H ⁸⁺	÷o		
(c)(i)	either ^δ -O—H ^{δ+}	÷o		
(c)(i)	either ⁵⁻ O—H ⁵⁺ or H ⁵⁺ ⁵ -O—H ⁵⁺ lone pair of electrons on O of H-bond,	in line with H-bond		
(c)(i)	either ⁵ -O—H ⁵⁺ or H ⁵⁺ ⁵ -O—H ⁵⁺ Ione pair of electrons on O of H-bond, X = liquid AND Z = solid	in line with H-bond		
	i.e.: either 5-O—H5+ or H5+ lone pair of electrons on O of H-bond, X = liquid AND Z = solid Y = liquid and solid OR 'liquid / solid' C	in line with H-bond	owtte	
	i.e.: either or H ⁸⁺ ⁸ O — H ⁸⁺ 6 or H ⁸⁺ ⁸ O — H ⁸⁺ Ione pair of electrons on O of H-bond, X = liquid AND Z = solid Y = liquid and solid OR 'liquid / solid' C (kinetic) energy reducing	in line with H-bond OR 'liquid OR solid'	owtte	
(c)(ii)	i.e.: either of O—Höt or or Höt of O—Höt Ione pair of electrons on O of H-bond, X = liquid AND Z = solid Y = liquid and solid OR 'liquid / solid' O (kinetic) energy reducing motion slowing	in line with H-bond OR 'liquid OR solid' ands / forming bonds exothermic	owtte owtte	

 $14.\ 9701_s16_ms_23\ Q: 1$

15. 9701_S15_ms_23 Q: 1

(a)		$(1s^2)2s^22p^6$	[1]
(b)	(i)	The amount of energy required/energy change when one electron is removed	[1]
		from each atom in one mol of gaseous atoms	[1] [1]
	(ii)	Greater nuclear charge/number of protons Same shielding/number of shells/energy level	[1] [1]
(c)	(i)	mean/average mass of the isotopes/an atom(s) relative to 1/12 of the mass of an atom of ¹² C/on a scale where an atom of ¹² C is (exactly) 12	[1] [1]
	(ii)	$20.2 = \frac{(20 \times 90.48) + (21 \times 0.27) + (9.25y)}{100}$	[1]
		$\frac{2020 - 1815.27}{9.25} = 22.133$ $y = 22$	[1]
(d)	(i)	$pV = \frac{mRT}{M_r}$	
		$M_r = \frac{mRT}{pV} = \frac{0.275 \times 8.31 \times 298}{100 \times 10^3 \times 200 \times 10^{-6}}$	[1]
		$M_r = 34.05/34.1$	[1]
	(ii)	(Let % Ne = x so % Ar = 100-x) $\frac{20.2x + 39.9(100 - x)}{34.05} = 34.05$	
		100 % Ne = 29.7	[1]
(e)	(i)	Van der Waal's/London/dispersion Uneven electron distribution/temporary dipole Induced dipole-dipole attraction	[1] [1] [1]
	(ii)	more electrons more polarisable/greater attraction/stronger IMFs	[1] [1]

16. 9701_w15_ms_22 Q: 1

(a)	name of isotope	type of particle	charge	symbol	electron configuration		
	carbon-13	atom	0	¹³ ₆ C	1s ² 2s ² 2p ²		
	chloride(-37)	anion	1-	Cl	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶		[5
	sulfur-34	atom	0	³⁴ ₁₆ S	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴		
	iron-54	cation	2+	⁵⁴ ₂₆ Fe ⁽²⁺⁾	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶		
(b) (i)	ability/tendency	/power of a	an atom/nu	cleus to attra	ct/pull electron(s)		[1
	in a covalent bor	nd/shared	pair of elect	rons/bonding	g pair of electrons		[1
(ii)	Covalent overlap of orbita	ls OR share	ed <u>pair</u> (s) (c	of electrons)			[1 [1
	OR metallic positive ions/ca	tions surrou	unded by de	elocalised ele	ctrons		[1
(iii)	lonic/electrovale (electrostatic) At		ween oppo	sitely charge	d/+ve and –ve <u>ions</u>	. 29	[1 [1
(c) (i)	similar strength/ forces/LDF/disp			ermolecular f	orces/induced dipole/van	der Waals'/VdW/London	[1
	therefore similar	energy nee	eded				[1
(ii)	M1 HCl polar/ha	as a dipole	AND F ₂ nor	n-polar/has n	o dipole	,	[1
					een HCl (molecules) AND	induced dipole (-induced dipole)	
	M2 more energy OR			- 2	10		[1
	pd-pd forces stro OR	onger than	id-id forces				
	IMFs/VdWs in F	HC1 stronge	r than in F ₂	-9			
(iii)	Hydrogen bondi	ng (betwee	n methanol	molecules)			[1
	Stronger than IM	1Fs/van de	r Waals' in	other three/is	s the strongest intermolecu	ular force	[1

17. 9701_s21_ms_21 Q: 2

Question			Answer		Marks
(a)(i)	M1 both make	triple (covalent) bond / 3 shared	pairs of electrons		1
	M2 one bond in	n CO is coordinate / dative cova	lent / formed by donating a pair	of electrons from O (to C)	
(a)(ii)		N_2	co		
	number of electrons per molecule	14	14		
	type of van der Waals'	temporary / instantaneous dipole–induced dipole	permanent dipoles- (permanent) dipoles		
			(and temporary / induced / instantaneous dipoles)		
(b)	CO / it is a pola	r molecule / it has a (permanen	t) dipole (but N ₂ is non-polar)		
(c)(i)	high temperatu	re AND low pressure		0-	
(c)(ii)	M1 CO is polar	/ has a permanent dipole OR N	l₂ is non-polar	40	
	M2 IMF in CO	are (more) significant / larger O	R IMF in N ₂ are smaller / less si	gnificant	
		wer 2 smaller than CO N ₂ molecules / particles smaller		i O	
	Alternative ans M2 volume of N	wer N ₂ molecules / particles is more	negligible	0,	

Question	Answer	Marks
Question	Aliswel	Marks
(d)	M1 correct conversion to consistent units P = 101 000 $V = 100 / 1 000 000 = (1 \times 10^{-4})$ $T = 293$	1
	M2 use of all values from M1 in correct relationship, n = PV / RT	1
	M3 calculation = 4.15 × 10 ⁻³ mol	1

$18.\ 9701_s19_ms_21\ Q:\ 3$

(a)	$Ar^{+}(g) \rightarrow Ar^{2+}(g) + e^{(-)} \mathbf{OR} Ar^{+}(g) - e^{(-)} \rightarrow Ar^{2+}(g)$	1
(b)	at x = 8, within range 13000–20000	1
	at x = 9, within range 35000–45000	1
(c)	8 or	1
(d)(i)	M1 correct conversions of data to SI/consistent units $p = 404\ 000;\ V = 20 \times 10^{-6};\ T = 298$	1
	M2 calculation of n (= pV/RT) from M1 values $n = \frac{404000 \times 20 \times 10^{-6}}{8.31 \times 298} = 3.263 \times 10^{-3} \text{ mol of } Cl_2$	1
	M3 finding the mass of Cl_2 = 3.263 × 10 ⁻³ × 71.0 = 0.23 (g)	1
(d)(ii)	Method 1 M1 = $3.263 \times 10^{-3} \times 2$ M1 = $\frac{0.23}{71.0} \times 2$ OR 6.53×10^{-3}	1
	M2 = $6.02 \times 10^{23} \times M1$ M2 = $6.02 \times 10^{23} \times M1$ = 3.93×10^{21} atoms of Cl = 3.90×10^{21} atoms of Cl	1
(d)(iii)	M1 size / volume of molecule / particle becomes significant / non-negligible OR IMFs become significant / non-negligible	1
	M2 IMFs becomes significant / non-negligible / collisions are not elastic	1

$19.\ 9701_s21_ms_22\ Q:\ 2$

Question	Answer	Marks
(a)(i)	Li+ AND S ²⁻	1
(a)(ii)	M1 giant	1
	M2 (many) strong force(s) of attraction between oppositely charged ions OR (many) strong ionic bond(s)	1
(b)(i)	(covalent) bond with both electrons are provided from the same / one species OR shared pair (of electrons) are provided from the same species / one atom owtte	1
(b)(ii)	3 bonding pairs between C and O, 4 •'s AND 2*'s 1 lone pair on C, **, AND 1 lone pair on O, ••. C X O	2

Question		Answer	Mark	
(c)(i)	Any two assumptions about the behaviour of particles in an ideal gas from			
	(particles / molecules have mass but) negligible size / volume (compared to total volume of gas / container)			
	no / negligible forces / interactions (be collisions are elastic	tween particles / molecules)		
(c)(ii)	M1 IMF become larger / more significant		1	
	M2 volume of molecules / particles becom	es significant / no longer negligible	1	
(c)(iii)	N ₂ (g)	CO(g)	2	
	instantaneous dipole–induced dipole ✓	instantaneous dipole—induced dipole (and) permanent dipole—permanent dipole ✓		
(c)(iv)	O is more electronegative than C		1	

 $20.\ 9701_w16_ms_21\ Q:\ 2$

(a)(i)	Enthalpy/energy/heat change when one mole of a substance	1	3
	Burns/combusts/reacts in excess oxygen	1	
	OR Completely burns/combusts/reacts in oxygen		
	under standard conditions	1	
(a)(ii)	$C_2H_6OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$	1	1
(b)(i)	6813.4/6813/6810/6800 (J)	1	1
(b)(ii)	-1362.68/-1362.7/-1363/-1360/-1400 (kJ)	1	1
(b)(iii)	Any 2 from: heat/energy losses (to air and/or to the container/surroundings)	1	2
	4.0	'	
	incomplete combustion	1	
	(volatile) ethanol evaporated		
	ethanol is impure		
	not all energy is lost as heat		
(c)(i)	$3C(s) + 4H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_3H_2OH(I)$		3
	3(-393.5) 4 x (-285.8) -2021.0	1+1	
	$3CO_2 + 4H_2O$	1	
(c)(ii)	$\Delta H_{\rm f}$ + (-2021.0) = 3(-393.5) + 4(-285.8)	1	2
	$\Delta H_f = -302.7 \text{ (kJ mol}^{-1}\text{)}$	1	
	Total:		13

 $21.\ 9701_w15_ms_22\ Q:\ 2$

M1 Heat (energy) change (or H _{prod} – H _{react}) measured at constant pressure OR enthalpy change when the amount/moles of reactants as shown in a (reaction) equation react together to give products M2 measured at standard conditions q = 2125.53 amount = 0.025(0)	[1] [1] [1]
enthalpy change when the amount/moles of reactants as shown in a (reaction) equation react together to give products M2 measured at standard conditions q = 2125.53 amount = 0.025(0)	[1]
q = 2125.53 amount = 0.025(0)	[1]
amount = 0.025(0)	
	[1]
-85.(0)	[1]
$(MgSO_4(s) + 7H_2O(I) \rightarrow MgSO_4.7H_2O(s))$	[1]
-85.0 (kJ mol ⁻¹) (+)9.60 (kJ mol ⁻¹) MgSO ₄ (aq)	[1]
$\Delta H + 9.6 = -85.0$ $\Delta H = -85.0 - 9.6 = -94.6 \text{ (kJ mol}^{-1}\text{)}$	[1]
Cor	
·: Palpa	
	$\Delta H + 9.6 = -85.0$ $\Delta H = -85.0 - 9.6 = -94.6 \text{ (kJ mol}^{-1})$

 $22.\ 9701_m19_ms_22\ Q:\ 2$

(a)(i)	M1 ① mass of a molecule OR ② (weighted) average / mean mass of the molecules OR ③ mass of one mole of molecules	2
	M2	
	\bigcirc / \bigcirc compared to $\frac{1}{12}$ (the mass) of an atom of carbon-12	
	OR on a scale in which a carbon-12 atom / isotope has a mass of (exactly) 12 (units)	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	OR on a scale in which 1 mole of carbon-12 (atoms / isotope) has a mass of (exactly) 12 g	
(a)(ii)	M1 identification of the IMF between F_2 molecules and between HC l molecules HC l has (permanent) dipoles and / or induced dipoles F_2 has induced dipoles	2
	M2 comparison of strength of IMF's in F_2 and HC l Intermolecular forces in HC l are stronger than F_2	
(a)(iii)	strong (electrostatic) forces of attraction between (oppositely charged) ions	1
(a)(iv)	$CaCO_3(s) + 2HF(aq) \rightarrow CaF_2(aq) + CO_2(g) + H_2O(l)$	2
	M1 species and balancing M2 state symbols	
(b)(i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	1
(b)(ii)	M1 purple gas / vapour disappears M2 iodine is not a strong enough oxidising agent ORA	2
(b)(iii)	M1 silver nitrate / AgNO ₃ M2 yellow	2
(b)(iv)	(aqueous) ammonia / NH₃(aq) / ammonium hydroxide / NH₄OH(aq)	1
(c)(i)	HX OX F	2
	M1 bonding pairs correct M2 rest of molecule, incl. lone pairs.	
(c)(ii)	$F_2 + H_2O \rightarrow HF + HOF$	1
(c)(iii)	M1 labelled reactants AND products lower on right	2
	M2 labelled enthalpy change with correct arrow	
(c)(iv)	δ+ δ- δ+ δ- H— F3 1111111 H— F	3
	M1 H-bond labelled / shown as distinct from H—F bond	
	M2 correct sequence of three correct dipoles	
	M3 lone pair on F in line with H-bond	
(d)(i)	pV =nRT :: $n = \frac{pV}{RT} = \frac{101325 \times 0.001}{8.31 \times 273} = 0.0447 \text{ mol}$	3
	$\therefore M_r = \frac{m}{n} = \frac{4.13}{0.0447} = 92.4 \text{ or } 92.5$	
	M1 Use of $T = 273 \text{K}$, $V = 0.001 \text{m}^3$ and $p = 101325 \text{Pa}$	
	M2 correct use of $pV = nRT$ using values from M1	
	M3 correct calculation of M _r using 4.13 ÷ moles from M2	
(d)(ii)	CIF ₃	1
	1	

$23.\ 9701_s20_ms_21\ Q\hbox{:}\ 2$

(a)(i)	2CuSO₄(aq) + 4KI(aq) → 2Cul(M1 correct balancing	(s) +(1)I ₂ (aq) + 2K ₂ SO ₄ (aq) M2 correct state symbols	2
(a)(ii)	Oxidation state of copper in Cu AND Oxidation state of copper in Cu	• •	
(a)(iii)	M1 redox		
	M2 iodide ions – lost electron(s) AND copper ions – gained electron(s)	
(b)	Mass of 0.0982mol CuSO ₄ in 17.43g CuSO ₄ .yH ₂ O	M1 calculate M, CuSO₄ using Ar from data booklet 63.5 + 32.1 + 64.0 = 159.6 M2 use Mr to calculate mass of CuSO₄ (0.0982 × M1) =15.67272g	4
	number of water in 17.43g of CuSO ₄ y H ₂ O	M3 calculate the mass amount of water in sample AND use this value to calculate the amount of water present (17.43-15.67)/18 = 0.097778 mol	
	value of y	M4 use the ratio of M2: 0.0982 to find y (mol H_2O + mol $CuSO_4$) = 1	

$24.\ 9701_s19_ms_23\ Q:\ 2$

(a)(i)	held in regular / uniform arrangement	1
(a)(ii)	M1 covalent (bonds) AND (temporary) induced dipoles	2
	M2 (temporary) induced dipoles	
(b)(i)	2	1
(b)(ii)	iodine (atom/s) donates a pair of electrons (to the A <i>I</i> -I covalent bond/s).	1
(c)(i)	$2H_2SO_4 + 14HI \rightarrow 7I_2 + 8H_2O + H_2S + S$	2
	M1 correct species	
	M2 correctly balanced equation	
(c)(ii)	explain with ref to ox no's why the reaction in (c)(i) is a redox reaction	2
	M1 I (oxidation number increases) from −1 to 0 = oxidation / reducing agent	
	M2 S (oxidation number decreases) from (+) 6 to 0 OR −2 = reduction / oxidising agent	

25. 9701_s16_ms_22 Q: 3

(-)	0.027.004.004.000.0034.000.170.0	
(a)	$Cr_2O_7^{2^-} + 8H^+ + 3H_2C_2O_4 \rightarrow 2Cr^{3^+} + 6CO_2 + 7H_2O$ M1 = species M2 = balancing	[1] [1]
(b) (i)	$(0.02 \times 32.0/1000 =) 6.40 \times 10^{-4}$	[1]
(ii)	$(6.4 \times 10^{-4} \times 3 =)1.92 \times 10^{-3}$	[1]
(iii)	$(0.242/1.92 \times 10^{-3})$ =) 126(.0)	[1]
(iv)	(126 – 90 = 36; 36/18 = 2 hence) x = 2	[1]

 $26.\ 9701_s21_ms_23\ Q:\ 2$

Question	Answer	Marks
(a)	M1 H-bond between an O and an H in OH groups in water and methanol molecules	
	M2 minimum three partial charges (in sequence) over one water and one methanol molecule, i.e.:	
	M3 either $^{\delta}$ -O—H $^{\delta+}$ $^{\delta-}$ O or H $^{\delta+}$ $^{\delta-}$ O—H $^{\delta+}$ lone pair of electrons on O of H-bond, in line with H-bond	
(b)(i)	M1 (methanol) gas (particles / molecules) in equilibrium with liquid	
	M2 (methanol) gas (particles) exert a pressure (on the walls of a container / on the surface of the liquid)	
(b)(ii)	(liquid) particles (at the surface) have enough energy (to overcome attractive forces / evaporate / to become a vapour)	
(b)(iii)	M1 (liquid) H ₂ O molecules are held by stronger hydrogen bonding OR it takes more energy to break the hydrogen bonds between water molecules (in the liquid state) OR each water molecule forms two hydrogen bonds (whereas methanol can (only) form one per molecule	
	M2 fewer H ₂ O liquid molecules (able to) escape / become gaseous ora	
(c)(i)	M1 rates of forward and reverse / backward reactions are equal	
	M2 closed / sealed system / container	
	OR no change in measurable properties / no change in macroscopic properties	
(c)(ii)	M1 mol fraction = 0.97 / (0.030 + 0.060 + 0.97) = 0.97 / 1.06 = (0.9151)	
	M2 M1 × 1.0 × 10^7 = 9.2 × 10^6 (Pa) $\checkmark\checkmark$	
(c)(iii)	expression for K_p M1 $K_p = p(CH_3OH)/p(CO) \times p(H_2)^2$	
	M2 units = Pa ⁻²	

$27.\ 9701_s18_ms_23\ Q\!:\, 1$

(a)	o s=0 C	4
	0 0 -cı	
	trigonal planar non-linear/bent/V-shaped/angular	
(b)(i)	stronger attraction for O ²⁻ / stronger ionic bonding / more energy needed to overcome ionic bonding / separate ions	1
	charge density of magnesium (ion) is greater (than sodium ion) ora	1
(b)(ii)	Either:	2
	M1 SiO ₂ has a giant (covalent) structure / giant molecular M2 Covalent bonds (much) stronger than VdW / id-id / IMFs in SO ₃	
	OR	
	M1 SO ₃ has a (simple) molecular structure / (simple) molecule. M2 VdW / id-id / IMFs M2 IMF's are (much) weaker than covalent bonds (broken in SiO ₂)	
	OR	
	M1 Covalent bonds are broken in SiO ₂ AND VdW / id-id / IMFs in SO ₃ M2 Covalent bonds are stronger (than VdW / id-id / IMFs)	
(c)(i)	molecules / particles / reacting species are closer together	1
	so frequency of collisions increases	1
	few(er) moles on right	1
	so (equilibrium) reaction shifts right / towards products / (as pressure increases to oppose the change)	1
(c)(ii)	Decreasing reactant concentrations (at different time intervals / as reaction progresses)	1
	So rate decreases OR change in concentration ÷ time taken decreases	1
(c)(iii)	(line becomes horizontal when) forward and reverse rates equal / equilibrium established	1
(c)(iv)	2:1 ratio in equation / SO ₂ used up more quickly (than O ₂) / 2 \times SO ₂ react for every 1 \times O ₂	1
(d)(i)	$K_c = \frac{\left[SO_3\right]^2}{\left[SO_2\right]^2 \times \left[O_2\right]}$	1
(d)(ii)	SO ₂ = 0.02 (mol)	1
	O ₂ = 1.01 (mol)	1
(d)(iii)	$K_c = \frac{(1.98/40)^2}{(0.02/40)^2 (1.01/40)}$ M1	3
	$=3.88/3.882 \times 10^{5}$ M2	
	Units = $dm^3 mol^{-1}/mol^{-1} dm^3$ M3	

 $28.\ 9701_w17_ms_22\ Q:\ 2$

(a)	-444	1
(b)(i)	(higher rate / rate increases) due to higher frequency of successful collisions	1
	more molecules / particles with $E \geqslant E_a$	1
(b)(ii)	(percentage decomposition of PCI ₅) increases	1
	(forward) reaction is endothermic	1
(c)	rates of forward and reverse / backward reactions are equal	1
	closed / sealed system/container	1
(d)(i)	n _{total} = 1.20 + 0.80 + 0.80 OR 2.80 (mol) OR mole fraction = 1.20/2.80 OR 0.429	1
	$pPCl_5 = 1 \times 10^5 \times (1.20/2.80) = 4.29 \times 10^4 (Pa)$	1
(d)(ii)	$K_{p} = \frac{pPCl_{3} \times pCl_{2}}{pPCl_{5}}$	1
(d)(iii)	1.91 × 10 ⁴	1
	Pa	1

 $29.\ 9701_w16_ms_22\ Q\hbox{:}\ 2$

(a)	Arrow vertically ${\bf up}$ from N ₂ O ₄ line to 2NO ₂ line labelled enthalpy change / ΔH	1
	Arrow vertically up from N ₂ O ₄ line to dashed line from peak labelled activation energy/E _a	1
	shergy (ALO,300 Fraction pathway)	
(b)(i)	$M_{\rm r} = \frac{m \times R \times T}{p \times V} \left(= \frac{4.606 \times 8.31 \times 323}{1.68 \times 10^5 \times 1 \times 10^{-3}} \right)$	1
	= 73.6	1
(b)(ii)	2n	1
(b)(iii)	0.05 – n + 2n OR 0 <mark>.05 + n</mark>	1
(b)(iv)	$\frac{2n}{(0.05+n)}$	1
(b)(v)	$N_2O_4 = 0.0375$ $NO_2 = 0.0250$	1
(b)(vi)	$K_{p} = \frac{pNO_{2}^{2}}{pN_{2}O_{4}}$	1
(b)(vii)	$(0.4 \times 1.68 \times 10^5)^2/(0.6 \times 1.68 \times 10^5)$ OR $0.4^2 \times 1.68 \times 10^5/0.6$	1
	44800 OR 44.8	1
	Pa OR kPa	1
	Total:	13

$30.\ 9701_s18_ms_21\ Q\!:\, 1$

(a)(i)	(It is a substance that) speeds up a reaction	
	(by creating an alternative pathway / mechanism with) lower E _a	
(a)(ii)	(a heterogeneous catalyst is in a) different state / phase (to the reactants)	
(b)	-196 + 6S=O = (4 × 534) + 496	
	S=O = 2828 / 6 = 471(.3)	
(c)	1 = B	
	2 = A	
	3 = D	
(d)(i)	Increases rate AND explanation re collisions	
	By increasing number / proportion of / more molecules / particles / species with $E \geqslant E_a$	
	(So) increases frequency of successful collisions / more successful collisions per unit time / higher chance of successful collisions per unit time / higher proportion of successful collisions per unit time	
(d)(ii)	(Increasing T) decreases yield (of SO ₃)	
	(Forward) reaction is exothermic (or reverse argument)	
	So increasing T shifts (equilibrium) reaction to left / towards reactants / in endothermic direction (to oppose the change in T)	
(e)	$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$	
(f)(i)		
(f)(ii)	fully ionises/dissociates	
	(Brønsted-Lowry acid is a) proton / H⁺ donor	
(f)(iii)	$H_2SO_4(I)/(aq) + H_2O(I) \rightarrow HSO_4^-(aq) + H_3O^+(aq)$	
	species and balancing	
	correct state symbols on left hand side; all products aqueous	

 $31.\ 9701_s18_ms_22\ Q:\ 2$

(a)	option 1: the mass of (all the atoms/ions in) a formula (unit) / molecule OR the (weighted) average / (weighted) mean mass of (all the atoms / ions in) the formula (unit) / molecule [1] relative / compared to 1 / 12 (the mass of an atom) of carbon–12 OR on a scale in which a carbon–12 (atom / isotope) has a (mass) of (exactly) 12 (units) [1] option 2: mass of one mol of a compound / formula (unit) / molecule [1] relative / compared to 1 / 12 (the mass) of 1 mol of C-12 OR in which one mol C-12 (atom / isotope) is (a mass of exactly) 12 g [1]	2
(b)(i)	H x• H*N(+)•H H* H	
	4 shared pairs only (any symbols) (in NH ₄)	1
	3 × dot-and-cross bonds AND 1 × 2 crosses (in NH ₄)	1
(b)(ii)	tetrahedral	1
	109–109.5° (inclusive)	1
c(i)	in any order explain meaning of: weak partially ionises / incompletely dissociates (into ions) Bronsted-Lowry acid is a proton donor / H ⁺ (ion) donor / hydrogen ion donor	2
c(ii)	$NH_4^+(aq) + H_2O(I) = NH_3(aq \text{ or } g) + H_3O^+(aq)$	
	all correct species and balancing	1
	correct state symbols	1
(d)(i)	$MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$	1
(d)(ii)	(Fe ²⁺ is a) reducing agent / reductant	2
	provides/donates electron(s) / loses electron(s) / increases its oxidation number / (Fe ²⁺) becomes Fe ³⁺	
(d)(iii)	4 × 10 ⁻⁴ / 0.0004	1
(d)(iv)	2 × 10 ⁻³ /0.002	1
(d)(v)	392	1
(d)(vi)	6	1

 $32.\ 9701_m21_ms_22\ Q:\ 1$

Question	Answer	Marks
(a)(i)	horizontal axis: (kinetic / particle) energy M1: shape of curve correct M2: labelled axes	2
(a)(ii)	Labelled line (T2) with lower peak to right of original	1
(b)(i)	Any two from: no VdW forces present / no forces of attraction between particles (ideal gas) particles have no / negligible volume (compared to container) collisions between (ideal gas) particles / walls of container are perfectly elastic (ideal gas) particles behave as rigid spheres	2
(b)(ii)	M1: moles of krypton = $2.00 \div 83.8$ (= 0.0239 mol) M2: conversion of value into consistent units for $pV = nRT$ M3: $p = \frac{M1 \times 8.31 \times 393}{5.00 \times 10^{-3}} = 15600 \text{Pa}$	3

Question	Answer	Marks
(b)(iii)	 M1: low pressure AND high temperature M2: Either of: volume of particles is negligible (compared to volume of container) VdW forces are insignificant (owing to high kinetic energy of particles) 	2
(c)(i)	Energy products activation energy (E) enthalpy change enthalpy change (ΔH is positive) Progress of reaction M1: end higher than start AND 'hill' for E_a M2: E_a AND ΔH labelled	2
(c)(ii)	 rate increases (increase in temperature means) more particles have energy ≥ activation energy frequency of successful collisions increases 	2

33. 9701_s17_ms_22 Q: 3

		-
(a)	(+) 103	1
(b)(i)	general shape of the curve and peak are displaced to right of original and starts at origin	1
	the peak is lower and curve crosses once only finishing above original	1
(b)(ii)	rate increases AND correct explanation in terms of 'more collisions'	
	at higher T area above E a is greater / more molecules with $E \geqslant E$ a	
	higher frequency of successful collisions OR more successful collisions per unit time / higher chance of successful collisions per unit time / higher proportion of successful collisions per unit time	,
(b)(iii)	increases (%) decomposition (of HBr)	
	(increasing T) shifts equilibrium to the right / in the forward direction / endothermic direction / towards H ₂ + Br ₂	
	to oppose the change or oppose the increase in temperature OR to absorb (additional) energy / heat OR to decrease the temperature	
(b)(iv)	H-I bond strength less than H-Br OR less energy needed to break H-I ora	
	I (atom) is big(ger) (than Br) OR I (atom) has more shielding (than Br) ora	
	Br (atom) has greater (%) orbital / outer shell overlap OR attraction (of nucleus in iodine) for shared (pair of) electrons is weak(er) OR attraction (of nucleus in iodine) for bonding pair (or electrons) is weak(er) ora	
(c)(i)	H ₂ = 0.015 (mol)	
	HCI = 0.27 (mol)	
(c)(ii)	$HCl = 9/10$ AND $xH_2 = 1/20$ AND $Cl_2 = 1/20$ OR $HCl = 0.9(0)$ AND $H_2 = 0.05$ AND $Cl_2 = 0.05$	
(d)(i)	$(K_p =) \frac{pH_2 \times pCl_2}{pHCl^2}$	
(d)(ii)	equal number of moles (of gas) on either side (of equation) / (total) pressure cancels	
(d)(iii)	4.649×10^{-3}	
	Total:	1

$34.\ 9701_w17_ms_21\ Q\!: 1$

(a)(i)	energy needed / required to break a mole of (covalent) bonds	1
	(All) in the gaseous state	1
(a)(ii)	-92 = {944 + 3(436)} - 6E(N-H)	1
	E(N-H) = (+)390.7/390.67/391	1
(b)(i)	general shape of the curve and peak are displaced to right of original line and starts at origin	1
	the peak is lower and curve crosses once only finishing above original line	1
	proportion of molecules higher T	
(b)(ii)	rate increases AND explanation in terms of collisions	1
	(at higher T) area above E_a is greater OR (at higher T) more molecules with $E \geqslant E_a$	1
	higher frequency of successful collisions	1
	OR more successful collisions per unit time / higher chance of successful collisions per unit time / higher proportion of successful collisions per unit time	·
(b)(iii)	reduces yield (of ammonia).	1
	(increasing <i>T</i>) shifts equilibrium (reaction) to the left / in the reverse direction / towards N ₂ and H ₂ / towards reactants / in endothermic direction	1
	to oppose the change OR oppose the increase in temperature OR to absorb the (additional) heat / energy OR decrease the temperature	1
(c)(i)	N ₂ = 0.850 (mol)	1
	H ₂ = 2.55 (mol)	1
(c)(ii)	$n_{\text{TOTAL}} = 3.7 \text{ mol}$	1
	mol fraction of $NH_3 = 0.3/3.7$	1
	$pNH_3 = 2 \times 10^7 \times (0.3/3.7) = 1.62 \times 10^6$	1
(d)(i)	$K_p = \frac{pNH_3^2}{pN_2 \times pH_2^3}$	1
(d)(ii)	$K_p = 1.(00) \times 10^{-16}$	1
	Pa ⁻²	1
	14	
(d)(iii)	(yield of ammonia) increases	1

 $35. 9701_S15_ms_21 Q: 2$

(a) (i)	Straight line drawn horizontally from same intercept	[1]
(ii)	T_1 because it shows greatest deviation/furthest from ideal	[1]
(iii)	reducing <i>T</i> (reduces KE of particles) so intermolecular forces of attraction become more significant	[1]
(iv)	greatest deviation is at high pressure increasing pressure decreases volume so volume of particles becomes more significant ora	[1]
(b)	Mass of air = 100×0.00118 = $0.118g$ Mass of flask = $47.930 - 0.118$ = $47.812g$ Mass of Y = $47.989 - 47.812$ = $0.177g$ $pV = nRT = \frac{m}{M_r} RT$ $M_r = \frac{mRT}{pV} = \frac{0.177 \times 8.31 \times 299}{1 \times 10^5 \times 100 \times 10^{-6}}$	[1] [1]
	$M_r = \frac{mRT}{pV} = \frac{0.177 \times 8.31 \times 299}{1 \times 10^5 \times 100 \times 10^{-6}}$ $= 44.0 \text{ (43.979 to 2 or more sf)}$	[1]
(c) (i)	strong triple bond	[1]
(ii)	high temperature (needed for reaction between N ₂ and O ₂)	[1]
(iii)	$ 2NO + 2CO \rightarrow N_2 + 2CO_2 $ $ OR 2NO + C \rightarrow N_2 + CO_2 $	[1]
(iv)	$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$	[1]
(v)	$NO + \frac{1}{2}O_2 \rightarrow NO_2$	[1]
	$NO_2 + SO_2 \rightarrow NO + SO_3$ $OR NO_2 + SO_2 + H_2O \rightarrow NO + H2SO_4$	[1]
••		

$36.\ 9701_s19_ms_21\ Q:\ 2$

(a)		1
(=/	M1 magnesium +2 charge on two Mg AND both with 0 or 8 electrons	
	M2 silicide -4 charge on one Si and 8 electrons	1
(b)	$Mg_2Si(s) + 4H_2O(\mathit{l}) \to 2Mg(OH)_2(aq) + SiH_4(g)$	1
	M1 correct balancing and formulae	
	M2 state symbols	1
(c)	M1 simple (covalent) / molecular / molecules	1
	M2 weak IMF / (temporary) induced dipole (forces)	1
(d)(i)	C ₂ -H ₂ +	1
	Siō+-Hō-	1
(d)(ii)	M1 tetrahedral (molecule)	1
	M2 (so individual bond) dipoles / partial charges cancel	1
(e)	M1 Si—H bond is (much) weaker than C—H bond	1
	M2 low activation energy ORA	1
(f)(i)	M1 sodium silicate / Na ₂ SiO ₃	1
	M2 water / H ₂ O	1
(f)(ii)	acid(ic)	1

$37.\ 9701_m18_ms_22\ Q:\ 1$

(a)(i)	 energy required / energy change when one electron is removed from each atom in one mole of gaseous atoms 	max 3
(a)(ii)	for element B (outer electron is removed) from a higher energy level more shielding less attraction to nucleus	3
(b)	line on graph decreases P—T increasing nuclear charge AND electrons in same shell greater attraction between nucleus (and electrons)	3

 $38.\ 9701_w16_ms_22\ Q:\ 3$

(a)(i)	Increasing nuclear attraction	
	Increasing nuclear charge / number of protons AND constant / similar shielding / same shell	
(a)(ii)	From 12/Mg to 13/A <i>l</i> : (Outer) electron in '13'/A <i>l</i> in (3)p (whereas outer electron in '12'/Mg in (3)s) (3p =) higher energy level/more shielded	
	From 15/P to 16/S electron repulsion ('16'/S has a) pair of electrons in a (3)p orbital/a (3)p orbital is full ORA	
(a)(iii)	(decreasing IE down Group 0) due to decreasing nuclear attraction	
	increasing shielding/increasing number of shells/energy levels/increasing distance of (outer) electrons (from nucleus)	
(b)(i)	Increasing strength of/more energy needed to break (metallic) bonding/increasing strength of attraction between (cat)ion/nucleus and delocalised/free/sea of/cloud of electrons	
	Increasing number of delocalised electrons/decreasing (cat)ion size/increasing charge/charge density of (cat)ion	
(b)(ii)	Attraction for electrons too strong to fully delocalise all 3 in A l OR difference in size between 12/Mg ²⁺ and 13/A l ³⁺ is less than difference in size between 11/Na ⁺ and 12/Mg ²⁺ OR magnitude of increase in charge is less from 2+ to 3+ than from 1+ to 2+	
(b)(iii)	Increase (15/P to 16/S) then decrease (to 17/Cl and 18/Ar) OR general decrease (from 15/P to 18/Ar) with an increase from 15/P to 16/S OR S ₍₈₎ >P ₍₄₎ >Cl ₍₂₎ >Ar	
	(melting point depends on strength of) VdW/IMFs	
	The greater the number of electrons in the molecule (atom for Ar) the greater the strength of VdW/IMFs OR the greater the melting point ora	
(b)(iv)	Giant covalent (structure)/many (strong) covalent bonds (need breaking)	
	Total:	1

39. 9701_S15_ms_22 Q: 1

(a)	name of particle	relative mass	relative charge	
(a)		_	+1	[4]
	proton	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		[1]
	electron	1/1836	-1	[1]
	neutron	1	0	[1]
(b) (i)	Mass of an atom(s)			[1]
	relative to 1/12 th (the mas OR relative to carbon-12 which	, ,	on-12	[1]
(ii)	% of third isotope = 10		.0,	[1]
	(24×79)+(26×11.0)+10x 100	x = 24.3	idde	[1]
	10x = 248			
	x = 24.8 (3s.f.)	4	0,	[1]
(c) (i)	anode $2Cl^- \rightarrow Cl_2 + 2c$ cathode $Mg^{2+} + 2e^- \rightarrow 1c$			[1] [1]
(ii)	Mg O H 31.65 24.3 20.84 1.31 1	Cl 46.2 35.5		[1]
	1.30 1.30 1.31	1.30 = 1:1:1:1		
	MgOHC1			[1]
(d) (i)	Na ₂ O basic/alkaline; A <i>l</i> ₂ O Na ₂ O (giant) ionic AND S			[1] [1]
	$Na_2O + 2HCl \rightarrow 2NaCl +$	H₂O		[1]
••	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 +$	3H₂O		[1]
	$Al_2O_3 + 2NaOH + 7H_2O_3$ $Al_2O_3 + 2NaOH + 3H_2O_4$ $Al_2O_3 + 2NaOH \rightarrow 2NaO_4$ $Al_2O_3 + 2OH^- + 7H_2O_4$ $Al_2O_3 + 2OH^- + 3H_2O_4$ $Al_2O_3 + 2OH^- \rightarrow 2AlO_2^-$		-	[1]
	SO ₃ + NaOH → NaHSO ₄ SO ₃ + 2NaOH → Na ₂ SO ₄			[1]

40. 9701_s20_ms_21 Q: 1

(a)(i)	(different) number of neutrons.	1
(a)(ii)	the relative abundance / % abundance of (each) the isotopes.	1
(b)(i)	M1 attractions between atoms within a gallium trichloride molecule covalent (bonds) M2 attractions between gallium trichloride molecules temporary induced dipoles	2
(b)(ii)	coordinate / dative (covalent)	1
(c)(i)	$4Ga + 3O_2 \rightarrow 2Ga_2O_3$ $M1$ correct formula of Ga_2O_3 $M2$ correctly balanced equation based on $Ga + O_2$ and formula of gallium oxide in M1	2
(c)(ii)	amphoteric	1

 $41.\ 9701_s20_ms_22\ Q:\ 1$

(a)	EITHER				2				
	M1 (weigh	hted) averag	ge/mean mass of the isotope(s)/an atom(s						
	M2 relative to 1/12 of the mass (of an atom) of ¹² C (where an atom of ¹² C is exactly12).								
	OR								
	M1 mass	of one mol o	of atoms	40					
			ed to 1/12 (the mass) of 1 mol of C-12 OR						
	in which o	one mol C-12	2 (atom) has a mass of (exactly) 12 g						
(b)	M1 60.11 M2 69.80		39.89/100x71		2				
(c)	isotope	nucleon number	total number of electrons in lowest energy level	type of orbital contains the electron in the highest energy level	3				
	⁷¹ Ga	M1 71	M2 2	M3 p (-orbital)					
(d)	M1 shape								
	Cl. Gá	I							
	CI								
	-	angle 120(°)							
(e)(i)	Ga ₂ O ₂ + 6	HCl → 2Ga	aCh + 3H ₂ O		1				
	1				-				
(e)(ii)		ty of correct I) ₄ OR NaGa	gallium containing product		2				
	1	ctly balance	d equation for reaction of Ga ₂ O ₃ with NaO	H(aq)					
	EITHER	N-OLL - ALL	0. \ 2N=0=(011)						
	Ga ₂ O ₃ + 2	NaOH + 3H	₂ O → 2NaGa(OH) ₄						
		NaOH → 2N	NaGaO ₂ + H ₂ O						

$42.\ 9701_w19_ms_21\ Q:\ 2$

(a)	Na₂O	MgO	A 12O3	SiO ₂	SO ₃		
	ionic	ionic	ionic	covalent	covalent		
	giant	giant	giant	giant / macro- molecular	simple / molecular		
	Award on	e mark fo	r each cor	rect row.			
(b)(i)	M1 SiO ₂ h	nas a netv	work of str	ong bonds / SiO ₂	has many strong b	nds	
	OR weak VdV	V forces (between n	,	onds than overcome	forces (between molecules)	
(b)(ii)	M1: react	s with bot	h acid and	l base / alkali			
					e.g. A½O ₃ + 6HC <i>l</i> alkali, e.g. A½O ₃ +	$ ightarrow$ 2A ICI_3 + 3H $_2$ O 2NaOH + 3H $_2$ O $ ightarrow$ 2NaA I (OH) $_4$	
(b)(iii)	solid disse OR gets warn		appears			70	
(c)(i)	octahedra	ıl				40	
(c)(ii)	M1 : use of (514 – xE			sion in terms of s	specific bond energion	s.	
	M2: use of used. (514 – 2E			etry AND correct	processing of expres	sion given in M1. Provided the values 514 and 346 are	
	= (+)430		,				
(c)(iii)	SeO ₂ + 2	2NaOH –	→ Na ₂ SeC) ₃ + H ₂ O	- 4		

$43.\ 9701_w19_ms_22\ Q:\ 2$

				4/2		
(a)	Na ₂ O	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀ /P ₄ O ₆ /P ₂ O ₃ / P ₂ O ₅	SO ₃	
	basic	amphoteric	acidic	acidic	acidic	
	M1: all forr	nulae correct	. 4			
	M2: all acid	d / base behav	iour corr	ectly stated		
(b)(i)	reacts with	both acid and	l base			
(b)(ii)	OH⁻ + H⁺-	→ H ₂ O				
(b)(iii)		th strontium / r	eaction	will effervesce / fizz / bubb	le	
	oR no fizzes /	bubbles / effer	vescence	e with SrO		
(b)(iv)	increases	-				
(c)(i)		t conversion o	f quantiti	es		
	V = 5(.00) [$T = 293$ (K)					
	p = 5.37(0)	□10³ (Pa)				
	M2: calculation (n) = 1.1 \Box	ation to find n 10 ⁻³ (mol)	using n =	PV/RT		
(c)(ii)	(i) □ 78 = 0.	0860 g				
(c)(iii)	* 0	· *				
	M1: bondir	ng pair betwee	n the two	0		
	M2: total o	f 14 electrons	distribute	ed equally between the two	0	

 $44.\ 9701_s18_ms_21\ Q:\ 3$

(a)(i) increasing attraction between nucleus and (outer) electrons increasing nuclear charge with similar shielding / (electrons in) same (outer) shell (a)(ii) (ions of Na to Si have) lost outer shell / outer electrons OR atoms have one more shell than (corresponding) ions OR effective nuclear charge is greater for the ion (a)(iii) (P to Cl form ions by) gaining electrons (to the same outer shell / p sub-shell) Increased repulsion between electrons in same / outer shell / p sub-shell (b)(i) (outer) electron removed from 3p subshell / orbital (3p) higher in energy / more shielded / further from the nucleus (b)(ii) (outer) electron for S is paired in a p orbital / S has a full p orbital causing (spin / electron) pair repulsion (which reduces attraction) (c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCl, MgCl₂, AlCl₃,SiCl₄ / number of chlorines matches group number chlorine oxidation number / state −1 in all / stays the same (c)(ii) NaCl → Na ⁺ + Cl ⁻ SiCl₄ + 2H₂O → SiO₂ + 4HCl (c)(iii) structure bonding	11 11 11 11 11 11 11 11 11 11 11 11 11
(a)(ii) (ions of Na to Si have) lost outer shell / outer electrons OR atoms have one more shell than (corresponding) ions OR effective nuclear charge is greater for the ion (a)(iii) (P to Cl form ions by) gaining electrons (to the same outer shell / p sub-shell) Increased repulsion between electrons in same / outer shell / p sub-shell (b)(i) (outer) electron removed from 3p subshell / orbital (3p) higher in energy / more shielded / further from the nucleus (b)(ii) (outer) electron for S is paired in a p orbital / S has a full p orbital causing (spin / electron) pair repulsion (which reduces attraction) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCl, MgCl₂, AlCl₃,SiCl₄ / number of chlorines matches group number chlorine oxidation number / state −1 in all / stays the same (c)(ii) NaCl → Na ⁺ + Cl ⁻ SiCl₄ + 2H₂O → SiO₂ + 4HCl (c)(iii) structure bonding	11 11 11 11 11 11 11
OR atoms have one more shell than (corresponding) ions OR effective nuclear charge is greater for the ion (a)(iii) (P to CI form ions by) gaining electrons (to the same outer shell / p sub-shell) Increased repulsion between electrons in same / outer shell / p sub-shell (b)(i) (outer) electron removed from 3p subshell / orbital (3p) higher in energy / more shielded / further from the nucleus (b)(ii) (outer) electron for S is paired in a p orbital / S has a full p orbital causing (spin / electron) pair repulsion (which reduces attraction) (c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCI, MgCI ₂ , AICI ₃ ,SiCI ₄ / number of chlorines matches group number chlorine oxidation number / state -1 in all / stays the same (c)(ii) NaCI → Na ⁺ + CI ⁻ SiCI ₄ + 2H ₂ O → SiO ₂ + 4HCI (c)(iii) structure bonding	1 1 1 1 1 1 1 1 1 1 1 1
atoms have one more shell than (corresponding) ions OR effective nuclear charge is greater for the ion (a)(iii) (P to CI form ions by) gaining electrons (to the same outer shell / p sub-shell) Increased repulsion between electrons in same / outer shell / p sub-shell (b)(i) (outer) electron removed from 3p subshell / orbital (3p) higher in energy / more shielded / further from the nucleus (b)(ii) (outer) electron for S is paired in a p orbital / S has a full p orbital causing (spin / electron) pair repulsion (which reduces attraction) (c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCI, MgCI₂, AiCI₃,SiCI₄ / number of chlorines matches group number chlorine oxidation number / state −1 in all / stays the same (c)(ii) NaCI → Na ⁺ + CI ⁻ SiCI₄ + 2H₂O → SiO₂ + 4HCI (c)(iii) structure bonding	1 1 1 1 1 1 1
effective nuclear charge is greater for the ion (a)(iii) (P to Cl form ions by) gaining electrons (to the same outer shell / p sub-shell) Increased repulsion between electrons in same / outer shell / p sub-shell (b)(i) (outer) electron removed from 3p subshell / orbital (3p) higher in energy / more shielded / further from the nucleus (b)(ii) (outer) electron for S is paired in a p orbital / S has a full p orbital causing (spin / electron) pair repulsion (which reduces attraction) (c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCl, MgCl ₂ , AlCl ₃ ,SiCl ₄ / number of chlorines matches group number chlorine oxidation number / state -1 in all / stays the same (c)(ii) NaCl → Na ⁺ + Cl ⁻ SiCl ₄ + 2H ₂ O → SiO ₂ + 4HCl (c)(iii) structure bonding	1 1 1 1 1 1 1
Increased repulsion between electrons in same / outer shell / p sub-shell (b)(i) (outer) electron removed from 3p subshell / orbital (3p) higher in energy / more shielded / further from the nucleus (b)(ii) (outer) electron for S is paired in a p orbital / S has a full p orbital causing (spin / electron) pair repulsion (which reduces attraction) (c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCl, MgCl ₂ , AlCl ₃ ,SiCl ₄ / number of chlorines matches group number chlorine oxidation number / state -1 in all / stays the same (c)(ii) NaCl → Na ⁺ + Cl ⁻ SiCl ₄ + 2H ₂ O → SiO ₂ + 4HCl (c)(iii) structure bonding	1 1 1 1 1 1 1
(b)(i) (outer) electron removed from 3p subshell / orbital (3p) higher in energy / more shielded / further from the nucleus (b)(ii) (outer) electron for S is paired in a p orbital / S has a full p orbital causing (spin / electron) pair repulsion (which reduces attraction) (c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCl, MgCl₂, AlCl₃,SiCl₄ / number of chlorines matches group number chlorine oxidation number / state −1 in all / stays the same (c)(ii) NaCl → Na ⁺ + Cl ⁻ SiCl₄ + 2H₂O → SiO₂ + 4HCl (c)(iii) structure bonding	1 1 1 1 1 1
(3p) higher in energy / more shielded / further from the nucleus (b)(ii) (outer) electron for S is paired in a p orbital / S has a full p orbital causing (spin / electron) pair repulsion (which reduces attraction) (c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCl, MgCl₂, AlCl₃,SiCl₄ / number of chlorines matches group number chlorine oxidation number / state −1 in all / stays the same (c)(ii) NaCl → Na ⁺ + Cl ⁻ SiCl₄ + 2H₂O → SiO₂ + 4HCl (c)(iii) structure bonding	1 1 1 1 1
(b)(ii) (outer) electron for S is paired in a p orbital / S has a full p orbital causing (spin / electron) pair repulsion (which reduces attraction) (c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCl, MgCl₂, AlCl₃,SiCl₄ / number of chlorines matches group number chlorine oxidation number / state −1 in all / stays the same (c)(ii) NaCl → Na ⁺ + Cl ⁻ SiCl₄ + 2H₂O → SiO₂ + 4HCl (c)(iii) structure bonding	1 1 1 1
causing (spin / electron) pair repulsion (which reduces attraction) (c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCl, MgCl ₂ , AlCl ₃ ,SiCl ₄ / number of chlorines matches group number chlorine oxidation number / state -1 in all / stays the same (c)(ii) NaCl → Na ⁺ + Cl ⁻ SiCl ₄ + 2H ₂ O → SiO ₂ + 4HCl (c)(iii) structure bonding	1 1 1 1
(c)(i) oxidation numbers / states of elements (Na-Si) increase from +1 to +4 / by 1 every time increasing number of valence electrons / NaCl, MgCl₂, AlCl₃,SiCl₄ / number of chlorines matches group number chlorine oxidation number / state −1 in all / stays the same (c)(ii) NaCl → Na ⁺ + Cl ⁻ SiCl₄ + 2H₂O → SiO₂ + 4HCl (c)(iii) structure bonding	1 1 1
increasing number of valence electrons / NaC l_1 , MgC l_2 , A lCl_3 ,SiC l_4 / number of chlorines matches group number chlorine oxidation number / state -1 in all / stays the same (c)(ii) NaC $l \rightarrow$ Na ⁺ + C l ⁻ SiC l_4 + 2H ₂ O \rightarrow SiO ₂ + 4HC l (c)(iii) structure bonding	1
chlorine oxidation number / state -1 in all / stays the same (c)(ii) NaC $l \rightarrow Na^+ + Cl^-$ SiC $l_4 + 2H_2O \rightarrow SiO_2 + 4HCl$ (c)(iii) structure bonding	1
(c)(ii) $ \begin{aligned} &\text{NaC} I \rightarrow \text{Na}^{\dagger} + \text{C} I^{-} \\ &\text{SiC} I_{4} + 2\text{H}_{2}\text{O} \rightarrow \text{SiO}_{2} + 4\text{HC} I \end{aligned} $ (c)(iii) $ \begin{aligned} &\text{structure} & \text{bonding} \end{aligned} $	1
$SiCI_4 + 2H_2O \rightarrow SiO_2 + 4HCI$ (c)(iii) structure bonding	
(c)(iii) structure bonding	
Studency Bottomy	1
	2
sodium chloride giant / ionic ionic	
silicon(IV) chloride simple / molecular covalent	
silicon(IV) chloride simple / molecular covalent	

 $45.\ 9701_m17_ms_22\ Q:\ 1$

(a)(i)	max O.N.	+1	(+)2	(+)3	(+)5	(+)6	+7					
(a)(ii)	(from Na to	Cl) nuclea	ır charge i	ncreases								
	electrons ar	e in the sa	me shell/	have same	shielding							
	greater/stro	onger attra	ction (of el	ectrons to	nucleus)							
(a)(iii)	Mg ²⁺ AND	S ²⁻										
	ion of Mg/N	n of Mg/Mg ²⁺ has one fewer shell (than ion of S/S ²⁻)										
(b)(i)	P ₄ + 5O ₂	→ P ₄ O ₁₀ /2	2P ₂ O ₅									
(b)(ii)	white white	ow/green o e flame e solid I melts	colour (of c	chlorine gas	i) disappea	irs	de					
(b)(iii)	phosphoric(V) acid				1						
(c)(i)	diagram sho	Owing regu	lar arrang	ement of (p	ositive) ion	ıs		1				
	surrounded							1				
(c)(ii)	elec hard	trical/therr <mark>//rigi</mark> d	nal insulat	limation po or emperature								
(c)(iii)	M1 % abundan	ce of fourth		0.185 + 0.2	51 + 88.45	0) = 11.1	14					
	M2 (0.185 × 13	5.907)+(0	.251×137.	906) + (88. 100	450×139.9	905) + (11.1	14×RIM)					
	= 140.116											
	∴ (140.116	× 100) – 12	2434.35 =	1577.246 =	= 11.114 ×	RIM						
	M3 RIM = $\frac{1577}{1}$	7.246 114 = 14	1.915									

 $46.\ 9701_w17_ms_21\ Q:\ 2$

(a)(i)	due to increasing nuclear attraction (for electrons)	1
	due to increasing nuclear charge / atomic / proton number AND similar shielding / same (outer/number of) shell / energy level	1
(a)(ii)	Cross shown on first vertical line from the y-axis (Group 0 / Ne) is clearly higher than all shown	1
	Cross shown on second vertical line from the y-axis (Group 1 / Na) lower than all shown	1
(a)(iii)	Al (the outer / valence) electron (which is lost) is in (3)p sub-shell (Mg is in (3)s subshell)	1
	OR Al (the outer / valence) electron (which is lost) is in higher energy sub-shell ora	
	(electron to be removed) is more shielded / experiences greater screening effect	1
	S has a pair of electrons in (a) (3)p <u>orbital</u> / (a 3)p <u>orbital</u> is full ora	1
	electron pair repulsion	1
(b)(i)	(L=) MgC½ / magnesium chloride	1
	Any two from (giant) ionic (with strong attractions)	2
(b)(ii)	(M=) SiCl ₄ / silicon chloride	1
	Any two from (simple) molecular / simple covalent hydrolysis possible due to available d orbitals forms HCl (aq) / hydrochloric acid / solution and / or HCl gas / fumes white solid is (hydrated) SiO_2 $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$	2
	Palpacalini	

 $47.\ 9701_w15_ms_21\ Q:\ 1$

(a)	regular arrangement/lattice of cations/positive ions surrounded by delocalised electrons	[1] [1]
(b) (i)	electrical conductor corrosion resistant low density ductile owtte	[1] [1]
(ii)	Giant/lattice	[1]
(iii)	(electrical) insulator	[1]
(c) (i)	Simple covalent / covalent molecule	[1]
	Weak intermolecular forces /VdW forces OR little energy needed to break down/overcome intermolecular/VdW forces	[1]
(ii)	$ \begin{array}{c cccc} Al & Cl \\ \underline{20.3} & \underline{79.7} \\ \hline 27 & 35.5 \end{array} $ $ \begin{array}{c ccccc} 0.752 & 2.25 \\ \hline 0.752 & 0.752 \end{array} $ $ 1 & 3 & AlCl_3 $	[1]
	1 3 AICl ₃	[1]
(iii)	$\rho V = \frac{m}{M_r} RT \qquad M_r = \frac{mRT}{\rho V} = \frac{1.36 \times 8.31 \times 473}{100 \times 10^3 \times 200 \times 10^{-6}}$ $= 267$	[1] [1]
	OR $pV = nRT$	[1]
	$M_{\rm r} = \frac{1.36}{5.09 \times 10^{-3}} = 267$	[1]
(iv)	Al ₂ Cl ₆	[1]

 $48.\ 9701_s21_ms_23\ Q:\ 3$

Question			Answe	r		Marks
(a)(i)		state at room temp	observations on add'n of sample to water	identity of sample		4
	R	solid	alkaline, colourless solution is made but some white solid remains	M1 Ba(OH) ₂ OR barium hydroxide		
	s	solid	white solid disappears, solution is neutral	M2 NaCl OR sodium chloride		
	U	liquid	misty fumes, white solid is made in vigorous reaction	M3 SiC 4 OR silicon(IV) chloride		
		solid	acidic, colourless solution is made in vigorous reaction	M4 P ₄ O ₁₀ OR phosphorus(V) oxide		
(a)(ii)	SiO ₂	<u> </u>			0-	1
(a)(iii)	phos	sphoric acid / phosphor	ic(V)acid		40	1
(b)(i)	•	strong / retain strength	typical of ceramic materials from: (over certain temperatures / conditions tricity / electrical insulators	s)	90	1
(b)(ii)	SiO ₂	!				1

Question	Answer	Marks
(c)	% of O M1 100 – 79.29 (= 20.71)	1
	M2 express W and O as mol by / 183.8 and / 16 respectively	1
	M3 divide each by smallest number to give empirical formula WO ₃	1

 $49.\ 9701_w21_ms_22\ Q:\ 2$

Question	Answer	Marks
(a)(i)	M M M C C C C	
(a)(ii)	All 3 points correct scores two marks Any 2 points scores one mark • nuclear charge increases OR increasing proton number e.g. 17 / Cl has a greater nuclear charge • describe the similarity in shielding between the two elements e.g. they have almost the same shielding	:
	describe the overall effect in terms of greater nuclear attraction for (outer) electrons e.g. (outer) electrons are attracted more (strongly) to the nucleus	
(a)(iii)	 M1 describes the difference between 1st IE of elements 15 and 16 (P and S) in terms of either: spin-pair repulsion (in element 16 / S) OR electron pair repulsion (in element 16 / S) M2 describes the location of the electron pair in the (3)p orbital which repel each other 	
(a)(iv)	(+)1 (+)2 (+)3 (+)4 (+)5 (+)6	
(a)(v)	M1 (anions have) same number of electrons (but increasing proton number) M2 increasing proton number / nuclear charge AND increasing attraction of nucleus for (outer) electrons OR (outer) electrons attracted more (strongly) to the nucleus AND because of increasing proton number / nuclear charge	
(b)	melling point of silverself A A A A A A A A A	

Question	Answer	Marks
(c)	M1 density of ₁₃ A <i>l</i> : value within range 2.5–5.0 (g cm ⁻³)	3
	M2 cationic radius of 31Ga: value within range 0.055–0.075 (nm)	
	M3 boiling point of ₄₉ ln: value within range 1500–2300 (K)	
(d)(i)	InCt ₃	1
(d)(ii)	$In_2O_3 + 2NaOH + 3H_2O \rightarrow 2NaIn(OH)_4$	1
(d)(iii)	Br In Br	2

 $50.\ 9701_s16_ms_21\ Q:\ 2$

(a)	D = Ga G = Se	[1]
(b) (i)	$D_2O_3 + 6HCl \rightarrow 2DCl_3 + 3H_2O$ M1 = species; M2 = balancing	[1] [1]
(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	M1 = species; M2 = balancing	[1] [1]
(c)	giant ionic/ionic lattice	[1]
(d)	$GO_2 + H_2O \rightarrow H_2GO_3$	[1]

51. 9701_w20_ms_21 Q: 1

(a)	$Mg(g) \rightarrow Mg^{+}(g) + e^{(-)}$	1
(b)	M1: distance between nucleus and outer e⁻ increases OR outer electron removed from higher energy shell	3
	M2: increased shielding	
	M3: decreased nuclear attraction	
(c)	M1: greater nuclear attraction	2
	M2: (2nd / 2s) electron being removed from smaller (ion)	

 $52.\ 9701_w20_ms_22\ Q:\ 2$

(a)	more acidic / less basic (from Na to S across period)	1
(b)	M1: increases (from Na to S / across period)	2
	M2: increasing (number of) valence electrons OR (number of) electrons in outer (electron) shell increases	
(c)	reaction name of product	2
	sodium oxide with water sodium hydroxide	
	phosphorus(V) oxide with water phosphoric(V) acid	
(d)	M1: Identification of forces broken during melting of phosphorus(V) oxide intermolecular forces in phosphorus(V) oxide (are broken)	3
	M2: identification of force broken during melting of magnesium oxide electrostatic forces of attraction between (many oppositely charged) ions in magnesium oxide	
	M3: statement linking difference in strength of appropriate forces described in M1& M2 to explain difference in melting point (only) intermolecular forces weaker than forces (of attraction) between ions / ionic bonds	
(e)(i)	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$	1
(e)(ii)	$Al_2O_3 + 2NaOH + 3H_2O \rightarrow 2NaAl(OH)_4$	1
(f)	M1: giant	2
	M2: covalent AND tetrahedral / four Si—O bonds	
(g)(i)	$Na_2O + SiO_2 \rightarrow Na_2SiO_3$	
(g)(ii)	$Na_2CO_3 \rightarrow Na_2O + CO_2$	1

$53.\ 9701_s19_ms_21\ Q:\ 1$

(a)(i)	M1 (one) fewer (inner) shell of electrons / less shielding (effect) ORA	1
	M2 smaller distance of the outer electrons (from the nucleus) / stronger nuclear attraction to the (outer) electrons ORA	1
(a)(ii)	$Sr(s) + 2H_2O(l) \rightarrow Sr(OH)_2(\underline{aq}) + H_2(g)$	1
	M1 species AND balancing	
	M2 state symbols	1
(a)(iii)	M1 strontium AND forms a more soluble hydroxide	1
	M2 strontium hydroxide is a stronger base / produces more OH ⁻ / it dissociates more	1
(a)(iv)	(white) solid dissolves / effervescence	1
(b)(i)	Similarities (any two from the following list) (both have) +2 ion / (+2) same oxidation state / same stoichiometry of oxide / carbonates decompose (on heating)	2
	Difference (X) forms coloured compounds/oxides/ carbonates OR Group 2 elements form white compounds/oxides/carbonates	1
(b)(ii)	xo	1
(b)(iii)	$XCO_3 \rightarrow XO + CO_2$	1

$54.\ 9701_s19_ms_23\ Q:\ 3$

(a)	white light / flame AND (produces a) white / grey solid / ash / powder / smoke	1
(b)(i)	$MgO + 2HCl \rightarrow MgCl_2 + H_2O$	1
(b)(ii)	neutralisation	1
(c)	M1 giant (structure / lattice)	2
	M2 (so) lots of energy needed to break the bonds OR strong bonds	
(d)(i)	$MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$	1
(d)(ii)	(thermal) decomposition	1

$55.\ 9701_s18_ms_22\ Q:\ 1$

(a)(i)	$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$	1
(a)(ii)	the product / Mg(OH) ₂ sparingly soluble / slightly soluble / less soluble (than NaOH)	1
(b)(i)	any two from: (from Mg to Ba) larger (atomic) radius / more shells / more shielding electron(s) are less tightly held (by nucleus) / less attracted (to nucleus) ionisation energy / ies decrease(s) / electron(s) lost (more) easily (down the group) lower activation energy (for the reactions down the group)	2
(b)(ii)	white light / white flame	1
	white smoke / white solid	1
	$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$	1
(b)(iii)	$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$	1
(b)(iv)	any two from: increasing (cation) size / (cat)ionic radius increases / increasing size of atoms overall charge on (cation) is constant / (+)2 / decreasing charge density of (+2 charged cation) number of delocalised / outer / valence electrons (per atom) remains the same / 2 increased shielding	2
	decreasing (strength of) attraction between (cat)ion / nucleus / nuclear charge AND delocalised electron(s)	1

 $56.\ 9701_m16_ms_22\ Q:\ 1$

	greater <u>attractive</u> force OR resets force between puelous and (outer) electrons	[1]
	greater force between nucleus and (outer) electrons	
	proton number/atomic number/nuclear charge increases across period AND electrons occupy same shell/shielding roughly constant	[1]
(ii)	sulfur's electron removed from full (3p) orbital	[1]
	OR sulfur has two electrons in the same orbital	
	electron-electron repulsion (reduces energy required)	[1]
(iii)	sodium has mobile/free electrons/electrons free (to move throughout the structure)	[1]
	phosphorus is simple/covalent/molecular	[1]
(iv)	magnesium has <u>two</u> free/delocalised/outer/valence electrons per atom OR	[1]
	more free/delocalised/outer electrons than sodium	
(b) (i)	$A = Mg(NO_3)_2$ $B = H_2$	[1] [1]
	$C = NO_2 OR O_2$	[1]
(::)	D = O ₂ OR NO ₂	[1]
(ii)	any Group I carbonate OR ammonium carbonate	[1]
	# APalpa Califila	

$57.\ 9701_s16_ms_21\ Q:\ 3$

(a) (i)	bubbles/effervescence/fizzing	[1]
	calcium gets smaller/disappears	[1]
	water turns cloudy/milky	[1]
	calcium sinks	[1]
(ii)	$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$	[1]
(iii)	faster bubbling / disappearance of Ba OR no / less precipitate forms (owtte)	[1]
(b) (i)	reactants Teactants Teactants Teactants Teaction pathway M1 – general layout with products below reactants AND both labelled M2 – E _a and ΔH/energy change/released labelled with vertical lines	[1]
(ii)	activation energy is high so few/no particles with $E \geqslant E_a$	[1]
(iii)	high melting/boiling point strong forces (of attraction/between oppositely charged ions)/strong (ionic) bonding	[1]
(iv)	MgO is basic / reacts with acid	[1]
(c) (i)	increases (down the group)	[1]
(ii)	$MgCO_3 \rightarrow MgO + CO_2$	[1]
(iii)	$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$	[1]

58. 9701_s20_ms_23 Q: 1

(a)(i)	M1 green flame / white flame (with green M2 white solid formed	tinge)		2
(a)(ii)	$2Ba(s) + O_2(g) \rightarrow 2BaO(s)$			1
(b)(i)	M1 heat (followed by) add water M2 CaCO ₃ → CaO + CO ₂ M3 CaO + H ₂ O → Ca(OH) ₂			3
(b)(ii)	thermal decomposition.			1
(b)(iii)	neutralise acid soil / reduce the acidity in	soil / increase the pH in so	oil	1
(c)(i)	$4Ga + 3O_2 \rightarrow 2Ga_2O_3$			1
(c)(ii)	(+)3			1
(c)(ii)	reagent and conditions	Formula of gallium containing product		2
	M1 gallium oxide+ hot HCl(aq)	M1 GaC/ ₃	0.	
	M2 gallium oxide+hot concentrated NaOH(aq)	M2 NaGa(OH) ₄ OR NaGaO ₂	200	

59. 9701_s17_ms_21 Q: 3

(a)(i)	A	
(a)(ii)	н	
(a)(iii)	G	
(a)(iv)	В	
(a)(v)	F	
(b)(i)	(strong) heating	
	(to provide / overcome) high activation energy	
(b)(ii)	white flame / white light / white smoke / white solid	
(b)(iii)	$Mg(s) + 2H2O(I) \rightarrow Mg(OH)2(s) + H2(g)$	
(c)(i)	$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$	
(c)(ii)	$CaCO_3 \rightarrow CaO + CO_2$	
•	$CaO + H_2O \rightarrow Ca(OH)_2$	
(d)(i)	reduce acidity in soil / increase pH of soil	
	(both) basic/base(s)	
(d)(ii)	$CaCO_3 + 2H^+ \rightarrow Ca^{2+} + CO_2 + H_2O$	
	OR $CaCO_3 + 2H^+ \rightarrow Ca^{2+} + H_2CO_3$	
	Total:	

 $60.\ 9701_w16_ms_21\ Q:\ 3$

(a)(i)	(Atoms/ ions become larger as) the number of (electron) shells increases (down the group)	1	2
	Increased distance of (outer) electrons (from the nucleus) OR	1	
	Increased shielding results in weaker (nuclear) attraction/pull		
(a)(ii)	top line/dotted line is atomic radii/bottom line/line with crosses is ionic radii (as atoms bigger than ions)	1	2
	Atom has one more shell (than corresponding ion) (ora) OR	1	
	Atom loses two electrons/outer (shell) electrons/valency electrons (ora) OR		
	Atom loses electrons and so (nuclear) attraction is stronger OR		
	Nuclear charge in ion is greater than the electron(ic) charge (ora) OR		
	Effective nuclear charge in ion is greater (ora)		
(b)(i)	Nitrate/Nitrate(V)/NO ₃	1	1
(b)(ii)	Ba/barium OR Sr/Strontium Ba ²⁺ + SO ₄ ²⁻ \rightarrow BaSO ₄ OR Sr ²⁺ + SO ₄ ²⁻ \rightarrow SrSO ₄	1	1
(b)(iii)	Ba(NO ₃) ₂ OR Sr(NO ₃) ₂	1	2
	$2Ba(NO_3)_2 \rightarrow 2BaO + 4NO_2 + O_2$ OR	1	
	$2Sr(NO_3)_2 \rightarrow 2SrO + 4NO_2 + O_2$		
(c)(i)	$H^+ + OH^- \rightarrow H_2O \text{ OR Ca}(OH)_2 + 2H^+ \rightarrow Ca^{2+} + 2H_2O$	1	2
	$2H^{+} + CO_{3}^{2^{-}} \rightarrow CO_{2} + H_{2}O \text{ OR } CaCO_{3} + 2H^{+} \rightarrow Ca^{2^{+}} + CO_{2} + H_{2}O$ OR $H^{+} + CO_{3}^{2^{-}} \rightarrow HCO_{3}^{-}$ OR $CaCO_{3} + H^{+} \rightarrow Ca^{2^{+}} + HCO_{3}^{-}$	1	
(c)(ii)	Calcium carbonate is insoluble/less soluble (ora)	1	2
	Calcium carbonate is less likely to be /won't get washed away (ora) OR	1	
	Calcium carbonate lasts longer (ora)		
	OR Calcium carbonate is less reactive/reacts more slowly (ora)		
(d)	Mg(OH) ₂	1	2
	MgO	1	
	Total:		14

 $61.\ 9701_S15_ms_23\ Q:\ 2$

(a) (i)	Reactivity increases down the group OR reference to observations that indicate trend Outer electrons lost more easily down group Due to increased distance/shielding of outer electrons from nucleus	[1] [1] [1]
(ii)	$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$	[1]
(iii)	Magnesium hydroxide sparingly soluble/insoluble	[1]
(iv)	$Mg + H_2O \rightarrow MgO + H_2$	[1]
(b) (i)	$MgO + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2O$	[1]
(ii)	(thermal stability) increases down the group	[1]
(iii)	$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$	[1]
(iv)	N from (+)5 to (+)3 O from -2 to 0 N is reduced and O is oxidised	[1] [1] [1]
(c)	(Very) strong electrostatic attraction/ionic bond High charge (density) of cation and anion/Mg ²⁺ and O ²⁻	[1] [1]
(d) (i)	$CaCO_3 \rightarrow CaO + CO_2$ $CaO + H_2O \rightarrow Ca(OH)_2$	[1] [1]
(ii)	$2H^{+} + CO_{3}^{2-} \rightarrow CO_{2} + H_{2}O$	[1]
(iii)	$1 \times 10^{-4} \times 8000 = 0.8 \text{mol H}^+$	[1]
	$\frac{0.8}{2} \times 100.1 = \text{mass CaCO}_3 = 40 \text{g}$	[1]

62. 9701 m17 ms 22 Q: 2

(a)(i)	bond in which th OR electron dist OR two (bonded	ribution is asy	mmetric/uneq		not coincide	
(a)(ii)	HF has the stror (forces)/HF has			ole/van der Waa	ıls'	
	requires more er van der Waals' f			aker (permanent) en halides)	dipole-dipole/	
(a)(iii)	thermal stability	of the hydroge	en halides decr	eases down grou	ір (17)	
	larger (halogen)	atoms/atomic	radius (down	group) / increase	ed shielding	
	bond energies d	ecrease/less	energy require	d to break H–X		
(b)(i)	M1 base is Cl ⁻ AND OR base is HSO ₄ ⁻ A				SO	
	M2 C <i>l</i> ⁻ /HSO ₄ ⁻ /base OR HC <i>l</i> /H ₂ SO ₄ /(con	•	·	1.011		
(b)(ii)	H ₂ SO ₄ is (too str	ong) an oxidis	sing agent	4		
	I ₂ would be form	ed instead	42			
(c)(i)	$\Delta_{\rm r}H = \Delta_{\rm r}H\{{\rm produ}$	icts} – Δ_r H{rea	actants} = 2 × (–242) – 4 × (–92)		
	= -116 (sign	n AND answe	n			
(c)(ii)	heterogeneous (catalyst)				
	provides an alter	native reactio	n pathway of lo	ower activation er	nergy	
(c)(iii)	reaction is exoth	ermic				
•	(increased temp products (Cl ₂ an			the left AND dec	reases yield of	
(c)(iv)	.,	HC1	O ₂	C l ₂	H ₂ O	
	initial number of moles	1.60	0.500	0	0	
	M1 eqm number of moles	1.60 - 2 × 0.600 = 0.400	$0.500 - \frac{1}{2} \times 0.600$ = 0.200	0.600	0.600	
	M2 mole fraction			<u>0.600</u> 1.80		
	M3 partial pressure			$\begin{array}{ c c }\hline 0.600 \\ \hline 1.80 \times p_{tot} = \\ 5.00 \times 10^4 \end{array}$		
(c)(v)	$K_p = \frac{\left(3.6 \times 10^4\right)^2}{\left(4.8 \times 10^4\right)^4}$	$\frac{1}{2} \times (3.6 \times 10^4)^2$ $\frac{1}{2} \times 3.0 \times 10^4$	= 1.05 × 10 ⁻⁵			
	units = Pa ⁻¹			2	45	
(c)(vi)	K _p would not cha	ange			Papa	an

 $63.\ 9701_w17_ms_22\ Q\hbox{:}\ 3$

(a)	(IE) <u>decreases / lower</u> because increasing distance of outer electron(s) from nucleus OR increasing distance of outer / valence shell from nucleus OR increased shielding / screening (from inner shells)	1
	reduces nuclear attraction (for electrons)	1
(b)(i)	(Melting point) increases / higher because (molecules have an) increasing (number of) electrons	1
	increasing strength / number / amount of IMFs / Van der Waals' / id–id / London / dispersion (forces)	1
(b)(ii)	increased metallic / (cat)ionic radius / size OR decreasing (cat)ion charge-density	1
	decreased attraction (of ions) for delocalised / outer electrons	1
(c)(i)	reaction 1: HNO ₃ or nitric((V)) acid	1
	reaction 2: water / H ₂ O	1
(c)(ii)	barium oxide	1
	2Ba + O ₂ → 2BaO	1
(c)(iii)	NO ₂ / nitrogen dioxide / nitrogen(IV) oxide AND O ₂ / oxygen	1
	(red / yellow-)brown gas OR gas given off that relights glowing splint	1
(c)(iv)	white ppt / solid / suspension	1
	of BaSO ₄ / barium sulfate OR Mg(OH) ₂ / magnesium hydroxide	1
	BaSO ₄ is insoluble OR Mg(OH) ₂ is insoluble / partially / slightly / sparingly soluble	1

 $64.\ 9701_s19_ms_22\ Q:\ 2$

(a)	trend in volatility down the group	1
	decrease (in volatility)	
	identification of specific IMF increasing	1
	increasing (strength of) induced dipole (id) (interactions between molecules)	
	explanation in terms of electrons	1
	increasing number of electrons	
(b)(i)	Conditions for reaction with Cl₂ at room temperature	1
	ultra-violet / uv	
(b)(ii)	$I_2(g/s) + H_2(g) \rightleftharpoons 2HI(g)$	1
	M1 correctly balanced equation	
	M2 correct state symbols AND use of equilibrium sign	1
(c)(i)	proton / H+ donor	1
(c)(ii)	acid HC/AND conjugate base C/-	1
(c)(iii)	co-ordinate / dative (covalent)	1
(c)(iv)	(triangular / trigonal) pyramid(al)	1
	107 ⁽⁰⁾	1

$65.\ 9701_s16_ms_22\ Q\hbox{:}\ 2$

(a) (i)	enthalpy/energy/heat change when one mole of gaseous atoms is produced	[1]
	from the element in its standard state	[1]
	under standard conditions	[1]
(ii)	fluorine and chlorine are gases/bromine liquid and iodine solid	
	OR as $\Delta H_{\rm at}$ for bromine/iodine also includes changes of state	[1]
(iii)		
	$ \begin{array}{l} (\frac{1}{2}Cl_2 + \frac{1}{2}I_2 \rightarrow ICl) \\ \Delta H_f = (\frac{1}{2}E(Cl_2) + \frac{1}{2}E(I_2)) - E(ICl) & \text{OR} & E(ICl) = (151/2) + (242/2) + 24 \end{array} $	[1]
	E(IC <i>I</i>) = (+) 220.5/221	[1]
(b) (i)	stronger/more/greater id-id/London/dispersion forces	[1]
	due to increasing numbers of electrons	[1]
(ii)	(intermolecular forces in HF are) hydrogen bonds (which are) stronger (than vd W)/more energy needed to separate molecules	[1] [1]
	OR	
	HF much more polar / F much more electronegative Intermolecular forces in HF stronger (than in HC l, HBr, HI)	[1] [1]
(c) (i)	$P = iodine/I_2/I; Q = chlorine/C_2/C_1$	[1]
(ii)	weaker H-P than H-Q bond ORA/easier /less energy to break H-P than H-Q ORA	[1]
	due to greater distance / shielding of nucleus from bond pair ORA	[1]
(iii)	$2HP (or 2HI) \rightarrow (or \rightleftharpoons) H_2 + P_2 (or I_2)$	[1]
(iv)	$Ag^{+}(aq) + \mathbf{Q}^{-}(aq) \text{ (or } Cl^{-}) \rightarrow Ag\mathbf{Q}(s) \text{ (or } AgCl(s))$	[1]
	$Ag\mathbf{Q}(s)/AgC\mathit{l}(s) + 2NH_3(aq) \to Ag(NH_3)_2^+(aq) + \mathbf{Q}^-(aq)/C\mathit{l}^-(aq)$	[1]
(d) (i)	no of C1 increases by one each time/matches group number	[1]
	due to increasing number of valence/outer(most/shell) electrons/oxidation number/valency (of Mg, Al, Si)	[1]
(ii)	$MgCl_2$ (+aq) $\rightarrow Mg^{2+} + 2Cl^-$	[1]
	$AlCl_3 + 6H_2O \rightarrow Al(H_2O)_6^{3+} + 3Cl^- / Al(H_2O)_5(OH)^{2+} + H^+ + 3Cl^-$	[1]
	$SiCl_4 + 2H_2O \rightarrow SiO_2 + 4H^+ + 4Cl^-$	[1]
	SIG14 · 21126 · 7 SIG2 · 411 · 4G1	

66. 9701_s21_ms_21 Q: 3

Question	Answer	Marks
(a)(i)	$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$ OR $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$	1
(a)(ii)	displacement / acid-base (reaction)	1
(b)(i)	hydrogen iodide / HI	1
(b)(ii)	dark grey solid I ₂ / iodine	1
	other product S / sulfur OR H ₂ S / hydrogen sulfide OR H ₂ O / water / steam	1
(c)	M1 iodide ions are strong(er) reducing agents (than chloride ions) ORA	1
	M2 HI / iodide is oxidised OR HCl/ chloride is not oxidised	1
(d)	2B□ + 2H⁺ + H₂SO₄ → Br₂ + 2H₂O + SO₂	1

67. $9701_s21_ms_22$ Q: 1

Question	Answer	Mark
(a)	M1 cream	1
	M2 AgBr	1
(b)	(1) MBr ₂ + 2AgNO ₃ \rightarrow 2AgBr + M(NO ₃) ₂	
(c)	M1 calculate Mr of M Br ₂ using 8.415 × 10 ⁻⁴ mol M Br ₂ in 0.250 g M _r = = 297(.1)	1
	M2 calculate the atomic mass of M using M_r calculated in M1 $297.1 - (2 \times 79.9) = 137(.4)$	
	M3 identify group 2 element from A _r in M2 Ba / barium	
(d)(i)	(solution / mixture / liquid) turns (colourless to) orange or brown	
(d)(ii)	displacement	
(e)	M1 reagent: concentrated sulfuric acid	1
	M2 observation: brown vapour / gas (forms)	1
(f)(i)	explain how the action of heat is used to identify the 3 samples	1
	M1 nitrate AND carbonate lose mass / less than 1 g	
	M2 nitrate produces brown (NO ₂) fumes	1
	M3 MgO no reaction / MgO no change	1
(f)(ii)	electronic configuration of Mg ²⁺ (1s ²) 2s ² 2p ⁶	1

Question	Answer	Mark
(g)	One similarity M1 solid(s) disappear(s)	1
	One difference M2 MgCO₃ fizzes (due to CO₂) OR no fizzing with Mg(OH)₂	1

 $68.\ 9701_m20_ms_22\ \ Q:\ 2$

(a)	darker / stronger / deeper down the group	1
(b)(i)	weaker oxidising agents / (relative reactivity as oxidising agents) decreases down the group	1
(b)(ii)	M1 (structure =) simple / molecular, because it has a low melting / boiling point M2 (bonding =) covalent, because it is hydrolysed	2
(c)(i)	M1 cream ppt/solid M2 (ppt/solid) partially dissolves in (aqueous) ammonia	2
(c)(ii)	M1 Acid behaviour of H ₂ SO ₄ H ₂ SO ₄ acts as an acid with Cl ⁻ OR acid / base reaction with Cl ⁻ M2 Oxidising behaviour of H ₂ SO ₄ H ₂ SO ₄ acts as an oxidising agent with I- OR H ₂ SO ₄ does not oxidise Cl ⁻	3
	M3 Products formed (for iodide reaction) $I_2/S/SO_2/H_2S$ is formed OR (for chloride reaction) (only) HCl is formed OR Comparison of oxidising strength H_2SO_4 not strong enough to / cannot oxidise Cl^- (to Cl_2) OR I^- more powerful reducing agent than Cl^-	
(d)(i)	M1 increases (down the group) because of increasing VdW M2 because of increasing number of electrons	2
(d)(ii)	M1 less stable (down the group) / decreases M2 lower H–Hal bond enthalpy / energy	2
(e)(i)	in the same phase / state	1
(e)(ii)	$C_2H_5CH(OH)C_2H_5 + HCI \rightarrow C_2H_5CH(CI)C_2H_5 + H_2O$	1
(e)(iii)	OH H ₃ C-C-CH ₂ CH ₃ CH ₃	1
(e)(iv)	substitution	1

 $69.\ 9701_s17_ms_23\ Q\hbox{:}\ 2$

(a)(i)	halogen	colour	state		
	chlorine	yellow / green	gas	•	
	bromine	red / brown / orange	liquid		
	iodine	grey / black	solid		
(a)(ii)	increasing number of e	lectrons		1	
	(gives) increasing strer	ngth of van der Waals'/	id-id forces / London / d	ispersion forces	
(b)	oxidising power decrea	ases down the group.	ora	1	
	ability to accept electro	ons decreases (down the	e group) ora	9	
	because (outer shell ex	kperiences) more shield	ing		
	increased distance from	n nucleus (to outer she	I) (outweighs the increa	sing nuclear charge down the group) ora	
(c)(i)	solid sodium chloride:	steamy / misty / white fu	mes	~	
	solid sodium iodide: pu	irple fumes		20	
(c)(ii)	(conc sulfuric) not power OR chloride not powerful e			e)	
	iodide reduces sulfuric OR iodide / I ⁻ is oxidised OR sulfuric acid oxidises io		d	40,	
(c)(iii)	2NaBr + 2H ₂ SO ₄ → Br ₂ · OR NaBr + H ₂ SO ₄ → NaHS OR 2NaBr + H ₂ SO ₄ → Na ₂ S	O ₄ + HBr AND 2HBr + F			
(d)(i)	AgI (and AgCl solid)/s	silver ions reacting with	iodide ions		
(d)(ii)	AgCl (precipitate) disso	olves (in ammonia)	owtte		
				Total:	1

 $70.\ 9701_s21_ms_23\ Q:\ 1$

	Answer	Marks
(a)(i)	increases	1
(a)(ii)	chlorine gas bromine liquid iodine solid	1
(b)	${f M1}$ observation with ${f C} b({f aq})$ (colourless / pale green to) orange / brown	1
	${ m M2}$ observation with ${ m I_2(aq)}$ no visible change	1
	M3 explanation chlorine is a stronger oxidising agent (than bromine) AND iodine is a weaker oxidising agent	1
(c)	C l₂ + 2NaOH → NaC l + NaC lO + H₂O	
(d)(i)	proton / H+ acceptor	
(d)(ii)	$ClO^- + H_2O \rightarrow HClO + OH^-$	
(e)	M1 Use volume O_2 to express / find no mol O_2 produced 24 / 24 000 mol O_2 produced = 1 × 10 ⁻³ (mol)	1
	M2 Use 1:1 ratio to deduce no mol NaClO in 1000 cm ³ sample M1 × 1000 / 5 = 0.2 (mol dm ⁻³)	ļ .
	M3 Use amount of NaClO and its molecular mass (74.5) to find the mass of NaClO added $^{-}$ 24 / 24 000 \times 1000 / 5 \times 74.5 = 14.9 (g dm $^{-3}$)	1
(f)	M1 products contain Ct AND Ct	
	M2 correct balanced equation $ClO^- + 2HCl \rightarrow Cl^- + H_2O + Cl_2$	

 $71.\ 9701_s18_ms_23\ Q\hbox{:}\ 3$

	(volatility) decreas	es			
(a)(ii)	increasing number	rs / more of electrons (in mole	ecules)		
	increased strength	of id-id / VdW / IMFs			
(b)	Cl₂ + 2NaI → 2	NaCl + I ₂			
(c)(i)			NaI(aq) + AgNO ₃ (aq)	NaCl(aq) + AgNO ₃ (aq)	
		colour of ppt	yellow	white	
		name of ppt	silver iodide	silver chloride	
		effect of addition of aqueous ammonia to the precipitate	No (visible) change	dissolves / soluble	
(c)(ii)	Ag ⁺ (aq) + I ⁻ (aq)	→ AgI(s)			
(d)	M1 sulfuric acid acts as an acid with NaC l (and NaB r) OR NaC l + H $_2$ SO $_4$ \rightarrow NaHSO $_4$ + HC l OR 2NaC l + H $_2$ SO $_4$ \rightarrow Na $_2$ SO $_4$ + 2HC l				
	2NaC1 + H ₂ SO ₄ -	→ Na ₂ SO ₄ + 2HC <i>l</i>		70	7
		as an oxidising agent with Na	I/I	196	•
	sulfuric acid acts a OR NaI is a reducing a I more powerful roor OR sulfuric acid can ooo OR sulfuric acid is a stoor	as an oxidising agent with Na	odide ions	doilo	
(e)(i)	sulfuric acid acts a OR NaI is a reducing a I more powerful roR sulfuric acid can or OR sulfuric acid is a st OR sulfuric acid is not	is an oxidising agent with Na agent educing agent than Cl^- ixidise I^- but not Cl^- tronger oxidising agent than i	odide ions than chloride ions	dollo	
	sulfuric acid acts a OR NaI is a reducing a I more powerful roR sulfuric acid can or OR sulfuric acid is a st OR sulfuric acid is not	is an oxidising agent with Na agent educing agent than Cl^- xidise I^- but not Cl^- tronger oxidising agent than as strong an oxidising agent ins electrons / electron accept	odide ions than chloride ions	horio	
(e)(i) (e)(ii) (e)(iii)	sulfuric acid acts a OR NaI is a reducing a I ⁻ more powerful rook sulfuric acid can ook oR sulfuric acid is a stook sulfuric acid is not (Species that) gair $Cl_2 + H_2O \rightarrow HO$	is an oxidising agent with Na agent educing agent than Cl^- xidise I^- but not Cl^- tronger oxidising agent than as strong an oxidising agent ins electrons / electron accept	odide ions than chloride ions or	doilo	

$72.\ 9701_s19_ms_22\ Q\hbox{:}\ 3$

(a)(i)	$SiCl_4(l) + 2H_2O(l) \rightarrow SiO_2(state symbols required)$	s) + 4H	IC <i>l</i> (aq	/g)		1
(a)(ii)	hydrolysis					1
(a)(iii)	NaCl – ionic					1
	SiCl ₄ – covalent					1
(a)(iv)	M1 statement correctly comp	paring	the diff	erence i	n electronegativity between Si and C $\it l$ AND Na and C $\it l$,
	OR					
	Na is less electronegative th	at Si C	DRA			
	M2 NaC1 transfer of electron	ıs				1
	M3 SiCl ₄ shared (pair of) ele	ctrons				
(b)(i)	Chlorine containing species	Cl ₂	HC1	HOC1		:
	Oxidation number of chlorine	0	-1	(+)1	.0	
	Award 2 marks for 3 correct	oxidat	ion num	nbers	10	
	Award 1 Mark for 2 correct of	xidatio	n numb	pers	4.0	
(b)(ii)	disproportionation					
(b)(iii)	kills micro-organisms					
(c)	2NaOH + HC1+ HC1O → N	laC1+	NaC <i>l</i> O	+ 2H ₂ O	NO.	2
	M1 Identifies the product Na	C <i>1</i> O				
	M2 Correctly balances the e	quatio	n			
	OR					
	The overall equation may be NaOH + HC $l \rightarrow NaCl + H_2l$			OH + HC	O → NaC/O + H ₂ O	

$73.\ 9701_s20_ms_21\ Q \hbox{:}\ 3$

(a)	M1 (enthalpy / energy change) when one mole of a compound/substance is formed M2 from its elements in their standard states	2
(b)	M1 <u>use</u> of correct stoichiometry in calculation $3x\Delta H_t \text{NO}_2 1x - \Delta H_t \text{H}_2\text{O} 2x\Delta H_t \text{H} \text{NO}_3 1x\Delta H_t \text{NO}$ M2 correct signs associated with the appropriate $\Delta H_t \text{values/terms}$ used for the calculation of $\Delta H_{\text{reaction}}$ M3 $\Delta H_{\text{reaction}} = -(102 - 286) + (-346 + 91.1) = -70.9 \text{kJ mol}^{-1}$	3
(c)	M1 nitrogen has a triple bond M2 EITHER high energy is needed to break the bond OR at normal temperatures there is not enough energy to break the bond / to overcome the activation energy	2
(d)	lightning	1
(e)(i)	M1 define homogeneous (homogeneous catalyst is) in the same phase / state as the reactants M2 and M3 Define catalyst All 3 points scores 2 marks. Any 2 points scores 1 mark increase the rate AND lowers the activation energy AND without being chemically altered at the end of the reaction / are regenerated at the end of the reaction	
(e)(ii)	M1 NO ₂ + SO ₂ \Rightarrow NO + SO ₃ M2 NO + $\frac{1}{2}$ O ₂ \Rightarrow NO ₂	2

74. 9701_s20_ms_21 Q: 4

(a)	Accept	s a proton / H+ (ion)		1
(b)	M1 Act	asons why product mix is as a fertiliser / adds n utralise acid soils / incre	utrients (for plan	2
(c)		name of shape	bond angle / °	3
	CO ₂	Linear	180	
	NH ₃	Pyramid(al)	107	
	H ₂ O	non-linear / V / bent	104.5	
	4 or 5 d	correct – 3 marks correct – 2 marks correct – 1 mark		

75. 9701_s20_ms_22 Q: 2

(a)	$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$	1
(b)	H ^{xx} _N xh xo H	1
(c)(i)	$3NO_2 + H_2O \rightarrow 2HNO_3 + NO$ $(+)4 $	2
(c)(ii)	relates the term disproportionation to the reaction described M1 nitrogen /N (in nitrogen dioxide) is both gaining electrons and losing electrons during the reaction M2 refer to relevant transfer of electrons when NO ₂ reacts to form HNO ₃ and NO NO ₂ to HNO ₃ involves loss of electron(s) AND NO ₂ to NO involves gain of electron(s)	
(d)	M1 state the effect of NO gas on contact with moist air NO reacts with water OR NO reacts with oxygen and water. M2 consequence of M1 in terms of atmospheric pollution causing acid rain OR photochemical smog / ground level ozone OR destroy ozone layer	2
(e)	M1 number of mol in sample of NH_4NO_3 40t $NH_4NO_3 = 500~000$ mol ammonium nitrate M2 ratio of mol NO_2 : NH_4NO_3 3/2 mol NO_2 :1 mol NH_4NO_3 M3 volume of no mol NO_2 at rtp using 1 mol = $24dm^3$ 18 000 000 dm ³ of NO_2	3
(f)	fertiliser	1

76. $9701_{w18}_{ms}_{21}$ Q: 2

(a)(i)	1 mark for each bullet, max 2 • triple bond • non-polar / no dipole • needs a lot of energy to break / strong	2
(a)(ii)	N N X	
	6 e ⁻ between atoms AND two electrons on each N atom	
(b)(i)	(lightning) provides the (high) activation energy	·
(b)(ii)	M1 NO + $\frac{1}{2}$ O ₂ \rightarrow NO ₂	2
	$M2\ 2NO_2 + H_2O + \frac{1}{2}O_2 \rightarrow 2HNO_3$	
(c)	M1 fertiliser / nitrates dissolve in (river / ground water) OR fertiliser / nitrates are washed / leached out / flows into (river/groundwater) M2 algal bloom / promote algal growth / explosion of plant growth AND sunlight is blocked out (preventing photosynthesis) / plants can no longer carry out photosynthesis (and die) AND bacteria break down or decay dead organisms / plants / algae M3 drop in oxygen (concentration)	
(d)(i)	to increase / raise pH	
(d)(ii)	M1 ammonia / NH ₃	2
	M2 displaces NH ₃	
(d)(iii)	M1 effervescence / fizzing / bubbling	- 2
	M2 solid disappears	
(d)(iv)	2Ca(NO ₃) ₂ → 2CaO + 4NO ₂ + O ₂	

77. $9701_s17_ms_22$ Q: 2

(a)	strong triple bond	
	non-polar / no dipole	
(b)(i)	Any 2 points covered correctly scores 2 marks Any 1 point covered correctly scores 1 mark	
	nitrogen (and oxygen) from the air / atmosphere (react):	
	high temperature (of internal combustion engine) / (engine) produces enough OR a lot of heat (energy) :	
	(so) breaks (strong) bond(s) in nitrogen (and oxygen) :	
(b)(ii)	reduction / decomposition of NO _x using a catalyst / catalytic convertor	
	$ 2NO_2 + 4CO \rightarrow 4CO_2 + N_2 $ OR $ 2NO + 2CO \rightarrow 2CO_2 + N_2 $	
(b)(iii)	(acts as a homogeneous) catalyst OR oxidising agent	
	$SO_2 + NO_2 \rightarrow SO_3 + NO$	
	$NO + \frac{1}{2}O_2 \rightarrow NO_2 \text{ OR } SO_3 + H_2O \rightarrow H_2SO_4$	
(b)(iv)	$ 2NO_2 + H_2O \rightarrow HNO_2 + HNO_3 $ OR $ 4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3 $	
(c)	fertiliser / nitrates dissolve in (river water) OR fertiliser / nitrates are washed / leached out / flows into (river water)	
	algal bloom / promote algal growth / explosion of plant growth AND EITHER sunlight is blocked out (preventing photosynthesis) / plants can no longer carry out photosynthesis (and die)	
	OR bacteria break down or decay dead organisms / plants / algae	
	drop in oxygen (concentration)	
	Total:	1

$78.\ 9701_s16_ms_23\ Q\hbox{:}\ 2$

(a) NH ₃ + HNO ₃ → NH ₄ NO ₃ [1] (b) (i) line from origin AND below left-hand end of original with peak to right of and lower than original crosses original once AND above right-hand end of original AND above energy axis [1] (iii) (curves show) more molecules with E > E _a (at higher T) so greater frequency of successful (owtte) collisions/more successful (owtte) collisions per unit time [1] (iii) catalysed E _a shown to left of original on horizontal axis so more molecules with E > E _a (in presence of catalyst) [1] (iv) production of ammonia is exothermic/(forward) reaction exothermic position of eqm would move to left/reverse/reduce yield (at higher T) [1] (c) 4NH ₃ + 5O ₂ → 4NO + 6H ₂ O N changes from -3 to +2 (so oxidation) O changes from 0 to -2 (so reduction) [1] (d) (i) H (+) H i i i i i i i i i i i i i i i i i i i			
crosses original once AND above right-hand end of original AND above energy axis (ii) (curves show) more molecules with E > E₀ (at higher T) so greater frequency of successful (owtte) collisions/more successful (owtte) collisions per unit time (iii) catalysed E₀ shown to left of original on horizontal axis so more molecules with E > E₀ (in presence of catalyst) (iv) production of ammonia is exothermic/(forward) reaction exothermic position of eqm would move to left/reverse/reduce yield (at higher T) (c) 4NH₃ + 5O₂ → 4NO + 6H₂O N changes from -3 to +2 (so oxidation) [1] (d) (i) H (+) H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ H ↑ N ↑ N	(a)	$NH_3 + HNO_3 \rightarrow NH_4NO_3$	[1]
so greater frequency of successful (owtte) collisions/more successful (owtte) collisions per unit time (iii) catalysed E_a shown to left of original on horizontal axis so more molecules with $E > E_a$ (in presence of catalyst) (iv) production of ammonia is exothermic/(forward) reaction exothermic position of eqm would move to left/reverse/reduce yield (at higher T) (c) $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ [1] (d) $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ [1] (d) $4NH_3 + 5O_3 \rightarrow 4NO + 6H_2O$ [1] (d) $4NH_3 + 5O_3 \rightarrow 4NO + 6H_2O$ [1] (d) $4NH_3 + 5O_3 \rightarrow 4NO + 6H_2O$ [1] (e) $4NH_3 + 5O_3 \rightarrow 4NO + 6H_2O$ [1] (f) $4NH_3 + 5O_3 \rightarrow 4NO + 6H_2O$ [1] (g) $4NH_3 + 5O_3 \rightarrow 4NO + 6H_2O$ [1] (h) $4NH_3 + 5O_3 \rightarrow 4NO + 6H_2O$ [1] (iv) production of ammonia is exothermic production exothermic position of experiments of exothermic position of experiments of	(b) (i)		
so more molecules with E > E _a (in presence of catalyst) (iv) production of ammonia is exothermic/(forward) reaction exothermic position of eqm would move to left/reverse/reduce yield (at higher T) (c) 4NH ₃ + 5O ₂ → 4NO + 6H ₂ O	(ii)		
position of eqm would move to left/reverse/reduce yield (at higher T) (c) 4NH ₃ + 5O ₂ → 4NO + 6H ₂ O	(iii)		
N changes from -3 to +2 (so oxidation) O changes from 0 to -2 (so reduction) (d) (i) H (+) H N I I I I I I I I I I I I I I I I I I	(iv)		
(ii) shape = tetrahedral angle = 109°-109.5° (e) eutrophication / algal bloom/stimulates growth of algae (bacteria) use up oxygen when decomposing the plants / algae [1] block light for plants so less oxygen produced [1]	(c)	N changes from –3 to +2 (so oxidation)	[1]
angle = 109°–109.5° (e) eutrophication/algal bloom/stimulates growth of algae (bacteria) use up oxygen when decomposing the plants/algae (block light for plants so less oxygen produced [1]	(d) (i)	H * N · H	[1+1]
(bacteria) use up oxygen when decomposing the plants/algae [1] block light for plants so less oxygen produced [1]	(ii)		
	(e)	(bacteria) use up oxygen when decomposing the plants/algae block light for plants so less oxygen produced	[1] [1]

79. $9701_{w15}_{ms}_{21}$ Q: 2

(a) (i)	The enthalpy change when one mole of a compound is formed from its element(s)	[1] [1]
(ii)	$S(s) + 1\frac{1}{2}O_2(g) \rightarrow SO_3(l)$	[1]
(b) (i)	$944 + (3 \times 436) = 2252$ $6 \times 390 = 2340$ $2252 - 2340 = -88 \text{ (kJ mol}^{-1})$	[1] [1] [1]
(ii)	Fe catalyst 200 atm 400–500 (°)C	[1] [1] [1]
(iii)	High T increases rate AND Low T improves yield owtte Chosen temp is a compromise High P favours/increases (both rate and) yield owtte pressure chosen limited by cost (of compression and 'thick walls')	[1] [1] [1]
(c) (i)	$2NH_3 + H_3PO_4 \rightarrow (NH_4)_2HPO_4$	[1]
(ii)	NH₃ identified as base AND H₃PO₄ identified as acid base accepts protons AND acid donates protons	[1] [1]
(d) (i)	nitrates/fertilisers wash into rivers eutrophication/algal bloom/promote algal growth bacteria use up oxygen in decay process	[1] [1] [1]
(ii)	(oxides of nitrogen/NO _x /NOs) cause acid rain	[1]
	$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$ OR $4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$ OR	[1]

80. $9701_{w21}_{ms}_{21}$ Q: 1

Question	Answer	Marks
(a)(i)	easily vaporised / easily evaporates / turns to gas easily	1
(a)(ii)	S x C x S	2
	M1 bonding pairs	
	M2 Correct number of remaining outer electrons	
(a)(iii)	180°	1
(a)(iv)	M1 CS ₂ has more electrons	2
	M2 So stronger induced dipole (forces) (between molecules)	
(b)(i)	M1 (enthalpy/energy change when) 1 mole of a compound	2
	M2 burns/combusts/reacts in excess oxygen/O ₂ OR completely burns/ completely combusts/completely reacts in oxygen/O ₂	
(b)(ii)	M1 (-394 +2 (-297) - (+89.7) M2 = -1080 (kJ mol ⁻¹)	2
(c)(i)	weak [acid] partially dissociates/partially ionises (into H⁺ ions/protons)	1
(c)(ii)	HS-	1

Question	Answer	Marks
(c)(iii)	M1 S (increases) oxidation number −2 → 0 so oxidation / or is oxidised	2
	M2 O (decreases) O.N. $0 \rightarrow -2$ so reduction / is reduced	
(d)(i)	M1 moles of $As_2S_3 = 0.198/246.1/8.05 \times 10^{-4}$	4
	M2 moles SO_2 (using moles of As_2S_3 as limiting factor) = $2.41(36) \times 10^{-3}$ moles $(6/2 \times 8.05 \times 10^{-4})$	
	Volume $SO_2 = 2.41(36) \times 10^{-3} \times 24 = 0.0579 \text{ dm}^3$	
	M3 Moles O_2 used in reaction = $8.05 \times 10^{-4} \times 9 / 2 = 3.62 \times 10^{-3}$	
	Volume O_2 used in reaction = 3.62 × 10 ⁻³ × 24 = 0.0869 dm ³	
	M4 Final total volume gas = $(0.1 - 0.0869) + 0.0579 = [0.0131 + 0.0579] = 0.071(0) dm3$	
	M4 ONLY award 4 th mark if the final answer rounds to 0.071	
	Answer to minimum of 2 sig figs	
	MAX 3 for using ecf from M1 to M2 to M3 and M4	
	Award all 4 marks if final answer rounds to 0.071	
(d)(ii)	acid rain	
(d)(iii)	M1 SO₂(g) + 2NaOH(aq) → Na₂SO₃(aq) + H₂O(<i>l</i>) AND correct species and balancing	2
	M2 State symbols	

81. 9701_w20_ms_21 Q: 2

(a)(i)	$P_4 + 5O_2 \rightarrow P_4O_{10}$	
(a)(ii)	any two from: reacts vigorously solid disappears / colourless solution forms hydrolysis exothermic acid(ic) (solution) steamy / misty fumes	
(a)(iii)	Simple and covalent OR molecular and covalent	
(b)(i)	M1: proton / H+ donor	
	M2: partially dissociates (in solution)	
(b)(ii)	$SO_2 + H_2O \rightarrow H_2SO_3$	
(b)(iii)	(homogeneous) catalyst	
(c)(i)	thermal decomposition	
(c)(ii)	M1 : Δ <i>H</i> _r = -1434 - (-635 + -297)	
	M2: = -502 (kJ mol ⁻¹)	
(d)(i)	CI O CI	
(d)(ii)	0 (+)4 -1	
(d)(iii)	(at 1000 K and 100 kPa) M1: (yield) decreases	
	M2: reaction is exothermic AND equilibrium moves left	
	(at 500 K and 500 kPa) M3: (yield) increases	
	M4: fewer moles (of gas) on right-hand side AND equilibrium moves right	
(e)(i)	M1: ionic	
	M2: ions only able / free to move / free to conduct (when liquid / molten)	
(e)(ii)	M1: covalent	
		\neg

82. $9701_s19_ms_23$ Q: 4

M1 sulfur impurities OR sulfur in fossil fuelsM2 converted into SO_2 by combustion / burning sulfur OR heat sulfur with oxygen (from the air)M1 1 mol $SO_2 \rightarrow 1$ mol H_2SO_4 64.1 g / tonne $\rightarrow 98.1$ g / tonneM2 $SO_2 \rightarrow 98.1/64.1$ \Box 1590 = 2433.369735 tonnes	2
OR heat sulfur with oxygen (from the air) M1 1 mol $SO_2 \rightarrow 1$ mol H_2SO_4 64.1 g/tonne $\rightarrow 98.1$ g/tonne M2 $SO_2 \rightarrow 98.1/64.1$ \square 1590 = 2433.369735 tonnes	2
heat sulfur with oxygen (from the air) M1 1 mol $SO_2 \rightarrow 1$ mol H_2SO_4 64.1 g/tonne $\rightarrow 98.1$ g/tonne M2 $SO_2 \rightarrow 98.1/64.1$ \square 1590 = 2433.369735 tonnes	2
64.1 g/tonne → 98.1 g/tonne M2 SO ₂ → 98.1/64.1 □ 1590 = 2433.369735 tonnes	2
M2 SO ₂ → 98.1/64.1 □ 1590 = 2433.369735 tonnes	
high (enough) temperature / (a lot of) heat (energy) is produced	2
AND to break (strong) triple bond in N₂ / break N≡N	
nitrogen (and oxygen) from the air / atmosphere react	
Award two marks for three correct points Award one mark for two correct points	
lightning	1
M1 nitrogen dioxide increases the rate	2
lowers the activation energy	
M2 (NO ₂) is regenerated by reaction of NO with O ₂ (in the air)	
OR NO (formed) reacts with O ₂ (in air) to (re)form NO ₂	
-:: APalpacainit	
	to break (strong) triple bond in N2 / break N≅N AND nitrogen (and oxygen) from the air / atmosphere react Award two marks for three correct points Award one mark for two correct points lightning M1 nitrogen dioxide increases the rate OR lowers the activation energy M2 (NO₂) is regenerated by reaction of NO with O₂ (in the air) OR NO (formed) reacts with O₂ (in air) to (re)form NO₂

83. 9701_w19_ms_22 Q: 1

(a)(i)	8	1
(a)(ii)	$Si(g) \rightarrow Si^{\dagger}(g) + e^{-}$	1
(a)(iii)	M1: similar shielding AND increase in proton number / atomic number / nuclear charge	2
	M2: increased nuclear attraction	
(a)(iv)	M1: 3 OR 13	2
	M2: large(r) increase between third and fourth ionisation energies OR large(r) increase after third electron removed	
(b)(i)	M1:	3
	[92.2 \(\text{28} \) \(\text{100} \) \(\text{29} \) \(\text{30} \) \(\text{5i} \) \(\text{29} \) \(\text{28} \) \(\tex	
	M2: (x =) 6.6 OR 28.09 = 28.078 + x (where x = abundance of Si-29)	
	M3: 7.8 – M2 calculated correctly to one decimal place (or more) (=) 1.2%	
(b)(ii)	M1 giant (molecule)	3
	M2 strong covalent bonds (between atoms / particles)	
	M3 no mobile charged particles / carriers	
(c)(i)	$C_2H_5SH + 4\frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O + SO_2$	1
(c)(ii)	M1: (causes) acid rain OR reacts/dissolves with (rain)water (vapour) to form (sulfuric / sulfurous) acid	2
	M2: one point from the following list.	
	□ lowers pH / increases acidity of rivers / lakes / oceans / water supplies / seas / soil / ground water □ kills/harms / damages fish	
	kills / harms / damages plants / damages coral / aquatic life / plants / crops / trees or deforestation	
	□ leaches (toxic) aluminium (ions / salts) from soil (into rivers / lakes)	
	□ leaches away soil nutrients / soil unfit for agriculture	
	damages / weathers / erodes / destroys buildings / statues	
(d)(i)	M1: no effect / none	2
	M2: equal mol(es) (of gas) on both sides (of equilibrium / equation) owtte	
(d)(ii)	M1: (forward reaction is) endothermic	2
	M2: Any temperature higher than 300 K	

84. 9701_w18_ms_21 Q: 1

1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ (4s ⁰)	1
-1	1
M1 attraction/hold	2
M2 positive ions / cations AND delocalised electrons (may be seen in a labelled diagram)	
M1 acid rain M2 destroys / damages / weathers / erodes / buildings / statues kills/harms fish / coral / plants / crops / trees / deforestation leaches salts / ions (aluminium) from soil (into rivers / lakes) leaches away soil nutrients breathing difficulties lowers pH / increases acidity of soil / rivers / oceans / seas	2
balanced equation with $11O_2$ and $8SO_2$ M1: O_2 and SO_2 M2: 11 and 8	2
	2
33.18 ÷ 159.6 (= 0.2079 mol)	
M2 for correct use of stoichiometry and 120.0 with candidate's M1	
M2 (0.2079) × 4/2 × 120.0 = 49.89 (g)	
(0.37/(0.37+49.89)) = 0.74	1
Palpacanni	
	M1 attraction/hold M2 positive ions / cations AND delocalised electrons (may be seen in a labelled diagram) M1 acid rain M2 • destroys / damages / weathers / erodes / buildings / statues • kills/harms fish / coral / plants / crops / trees / deforestation • leaches salts / ions (aluminium) from soil (into rivers / lakes) • leaches salts / ions (aluminium) from soil (into rivers / lakes) • leaches savay soil nutrients • breathing difficulties • bre

$85.\ 9701_w18_ms_22\ Q:\ 2$

(a)								3
(4)		Na	Mg	Al	Si	Р		3
		metallic	metallic	metallic	covalent	covalent		
		Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀		
		NaC1	$MgC\mathit{l}_2$	AICI ₃	SiC1 ₄	PC <i>l</i> ₅		
	[1] for each correc	t row						
(b)(i)	S CI	**						1
(b)(ii)	S ₂ C ₁₂ + C ₁ M1 profile for exot M2 identification of	reaction pathwa				igo	8	2
(c)(i)	graph rises to max	kimum for Si, ther	ı falls		7.0) .		1
(c)(ii)	OR stronger at Si is giant OR Si requires P and S has so have low	traction between covalent AND it has the most energy ave weak(er) interw(er) melting poir ronger/more interview	as the highest me because the cova molecular forces / its	ons and (positive elting point due to alent bonds in Si a induced dipoles) ion so melting po breaking / presend are stronger than r / van der Waals fo orces / induced dip	ce of strong (cova	lent) bonds Na / Mg / A <i>ī</i>) nt / metallic bonds)	3
(d)	$P_4O_{10} + 6H_2O \rightarrow 4$	lH₃PO₄) 0					1
(e)	 kills / harms / c leaches (toxic leaches away damages / we 	creases acidity of damages fish / col damages fish / col damages da damages damages damages da da da da da da da da da da da da da	rivers / lakes / oce ral / aquatic life / pl / salts) from soil (i il unfit for agricultu lestroys buildings	ants / crops / tree: into rivers/lakes) ure	ies / seas / soil / gr s or deforestation	ound water		2
(f)	M1 process of 'firs	st ionisation energ	y' involves the los	ss/removal of an e	electron [1]			4
	M2 Mg and Al AN	D S and P (in eith	er order) [1]					
	M3 For A <i>l</i> 3p (orb	ital / sub-level / su	b-shell) is higher i	n energy / further	from the nucleus	more shielded (th	nan Mg) [1] ora	
	M4 For S the pair	of electrons in the	e (3) p-orbital repe	el [1]			ora	

86. 9701_S15_ms_22 Q: 2

(a) (i)	2PbS + 3O₂ → 2PbO + 2SO₂ reagents and formulae balancing	[1] [1]
(ii)	S (is oxidised) -2 to (+)4 O (is reduced) 0 to -2	[1] [1]
(b) (i)	T = 400 – 600 °C (chosen as a compromise because) High T increases rate ora High T decreases yield/moves eqm left/makes less SO ₃ as forward reaction exothermic ora	[1] [1] [1]
(ii)	High pressure increases rate as collision frequency increases ora	[1]
	High pressure moves eqm right/favours forward reaction as more moles on	[1]
	left ora Uneconomic to use high pressures/high yield at low pressure	[1]
(c) (i)	Reaction (too) exothermic/acid spray produced	[1]
(ii)	$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$ $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$	[1] [1]
(d)	Preservative owtte antimicrobial/antioxidant/reducing agent	[1] [1]
(e) (i)	$12.35 \times 0.01/1000 = 1.235 \times 10^{-4}$	[1]
(ii)	$1.235 \times 10^{-4} \times 1000/50 = 2.47 \times 10^{-3}$	[1]
(iii)	$2.47 \times 10^{-3} \times 64.1 = 0.158327 g = 158 (3 sf only)$	[1]
	-0	

87. 9701_w15_ms_22 Q: 3

(a) (i)	Na ₂ O or Na ₂ O ₂ ; MgO; P ₄ O ₁₀ or P ₄ O ₆ ; SO ₂	[1] [1]
(ii)	Na: Yellow/orange/gold flame/white solid/powder/smoke $4Na + O_2 \rightarrow 2Na_2O$ or $2Na + O_2 \rightarrow Na_2O_2$	[1] [1]
	S: Blue flame/(yellow) solid melts/turns red/amber/white fumes $S + O_2 \rightarrow SO_2$	[1] [1]
(b) (i)	acidic P and S amphoteric A <i>I</i> and basic Na and Mg	[1] [1]
(ii)	acidic: covalent (bonding)	[1]
	basic: ionic (bonding)	[1]
(iii)	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$ OR $Al_2O_3 + 6H^+ \rightarrow 2Al^{3+} + 3H_2O$	[1]
	$Al_2O_3 + 2NaOH + 7H_2O \rightarrow 2NaAl (OH)_4(H_2O)_2 OR$ $Al_2O_3 + 2NaOH + 3H_2O \rightarrow 2NaAl (OH)_4 OR$ $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O OR$ $Al_2O_3 + 2OH^- + 7H_2O \rightarrow 2[Al(OH)_4(H_2O)_2]^- OR$ $Al_2O_3 + 2OH^- + 3H_2O \rightarrow 2[Al(OH)_4]^- OR$ $Al_2O_3 + 2OH^- \rightarrow 2AlO_2^- + H_2O$	[1]
(c)	sulfur forms SO_2/SO_2 +/mixes $H_2O \rightarrow H_2SO_3$ or in words OR SO_2 +/mixes H_2O (\rightarrow acid) / or in words OR SO_2 +/mixes H_2O (\rightarrow acid) / or in words OR SO_2 +/mixes H_2O + (1/2 O_2) \rightarrow H_2SO_4 /or in words	[1] [1]
	APalpa Call	

88. 9701_w16_ms_21 Q: 4

(a)(i)	4-methylhex-2-ene	1	1
(a)(ii)	(Molecules with the) same structural formula (and same molecular formula) with different arrangement of atoms/groups (in space)	1	1
(a)(iii)	4	1	4
	double-bond/alkene	1	
	(2) different groups on each double-bonded carbon	1	
	(one) chiral carbon (centre)/(one) carbon atom has 4 different groups attached/is asymmetric/is chiral	1	
(b)(i)	2,3-dimethylbut-2-ene	1	1
(b)(ii)	ОН ОН	1	1
(b)(iii)	Propanone	1	1
(b)(iv)	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ ———————————————————————————————————	1	1
(c)(i)	(2-)methylprop(-1-)ene	1	1
(c)(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4
(c)(iii)	(tertiary carbocat)ion/(tertiary) intermediate is/C+ with least number of hydrogen atoms bonded to it is more stable (than primary)	1	3
	due to (positive) inductive effect of three/more methyl groups (cf one)/three/more electron releasing methyl groups three/more electron donating methyl groups	1	
	reducing charge (density) on C+	1	
	Total:		18

 $89.\ 9701_m20_ms_22\ Q:\ 1$

(a)(i)	$CaO + H_2O \rightarrow Ca(OH)_2$	
(a)(ii)	OH⁻/ hydroxide	
(b)	M1 (decreasing melting point down the group because) lower forces of attraction / weaker bonds (between cations and anions / oxide / O ²⁻)	
	M2 larger cations and constant charge OR decreasing charge density of cation (down group)	
(c)	high(er) activation energy / heating overcomes activation energy	
(d)	180(°)	
(e)(i)	reacts with / behaves as both acid and base	
(e)(ii)	BeO + 2OH ⁻ + $H_2O \rightarrow Be(OH)_4^{2-}$	
(f)(i)	M1 equal rates of forward and backward reactions M2 closed system OR macroscopic properties unchanging	
(f)(ii)	M1 C l_2 O l_2 initial l_2 0 mol equilibrium 0.3 l_2 0.35 l_3 mol mol fraction l_4 l_5	
	initial x 0 mol equilibrium 0.3x 0.35x mol	
	mol fraction $\frac{6}{13}$ $\frac{7}{13}$	
	13 13	
	M2	
	$K_{p} = \frac{100000 \times \frac{7}{13}}{\left(100000 \times \frac{6}{13}\right)^{2}} = 2.53 \times 10^{-5}$	
	M3 Pa ⁻¹	
(g)(i)	-1	
(g)(ii)	M1 (enthalpy / energy change) when one mole of a compound / substance is formed M2 from its elements in their standard states	
(g)(iii)	$-(-602 + -188) + (\Delta H_{f} [MgO_{2}] + -286) = -96$	
	$\Delta H_1[MgO_2] = -600 (kJ mol^{-1})$	
(g)(iv)	$-(-600)-(+602)=-2 \text{ (kJ mol}^{-1})$	

 $90.\ 9701_s20_ms_22\ Q\hbox{:}\ 3$

(a)	hydrolysis	1
(b)	M1 both have molecular formula - C ₆ H ₁₂ O ₆ M2 idea that in glucose and fructose there are the same number and type of atoms present but the atoms are arranged in a different order ie one has a carbonyl group at the end of the chain/molecule and the other has a carbonyl group in the middle of the chain/molecule	2
(c)(i)	value for the activation energy for the reaction A (no enzyme) compared to reaction B (with enzyme) value / range of values that are more (+) 29 kJ mol ⁻¹	1
(c)(ii)	value for the enthalpy change for reaction A (no enzyme) compared to reaction B (with enzyme) -14 kJ mol ⁻¹	1
(c)(iii)	M1 show the energy of the reactants > products AND label ΔH using the predicted value given in (ii) M2 show activation energy 'hump' AND label using the value given in (i)	2
(d)(i)	M1 (enthalpy change) when 1 mole of sucrose M2 burns/combusts/reacts in excess air/oxygen OR completely burns/combusts/reacts in air/oxygen	2
(d)(ii)	M1 for finding amount of energy released per gram of sucrose using $\Delta H / Q = mc\Delta T$ OR $\Delta H = -mc\Delta T$ = (-)250x4.18x(40.7-25) = (-)16406.5 J per gram OR(-)16.4065 kJ / g M2 for finding amount (mol) sucrose in1g = 1/342 mol M3 = M1 / (M2x1000) $\Delta H = -5610$ kJ mol ⁻¹ (3 sig figs) OR -5611 kJ mol ⁻¹ (4 sig figs)	3
	-: Palpacalli	

91. 9701_s20_ms_23 Q: 3

(a)(i)	hydrolysis	1
(a)(ii)	M3 label / shading indicating greater area under curve of Ea(cat) AND state greater number / proportion of sucrose molecules have energy greater than Ea(cat) (so faster rate) M2 Ea cat (no cat)	3
(b)(i)	an atom which is bonded to four different substituents / groups / atoms	1
(b)(ii)	ALL three chiral carbons need to be shown by *	1
(b)(iii)	empirical formula of fructose CH ₂ O	1
(c)(i)	M1 (enthalpy change) when 1 mole of a substance M2 burns/combusts/reacts in excess air/oxygen OR completely burns/combusts/reacts in air/oxygen	2
(c)(ii)	$C_{12}H_{22}O_{11} + 12 O_2 \rightarrow 12CO_2 + 11H_2O$	1
(c)(iii)	M1 ΔH = -5643 – (-2805 + -2810) M2 = -28 kJ mol ⁻¹	2

92. 9701_s19_ms_21 Q: 5

		-
(a)	M1 a lone pair / electron pair donor	1
	M2 (:)CN-/-(:)CN/ cyanide ion	1
(b)(i)	optical	1
(b)(ii)	H CH ₃ CH ₃ H CN NC M1 one 3-D structure of correct molecule shown.	1
	M2 a mirror image of the molecule drawn in M1 OR same profile with two groups swapped (e.g. H CH3 OH OH	1
	M3 central chiral C shown as *	1
(c)	CH₃CH(OH)CO₂H OR HO₂CCH(OH)CH₃	1

93. $9701_s19_ms_22$ Q: 1

(a)(i)	C ₄ H ₁₀ / same molecular formula /	
	OR	
	same number of carbon (atoms) and hydrogen (atoms)	
	different structural formula	
	OR	
	description of different structural formula which does not imply stereoisomerism	
(a)(ii)	structural / chain	
(b)	(forward reaction is) exothermic reaction	
	the proportion of methylpropane / product decreases	
	OR	
	the proportion of butane / reactant increases	
(c)(i)	t shown on graph which corresponds to start of the horizontal part of both curves.	
(c)(ii)	concentration of butane = 0.3 mol dm ⁻³ AND concentration of methylpropane = 0.7 mol dm ⁻³	
(c)(iii)	[methylpropane] / [butane] OR [(CH ₃) ₂ CHCH ₃] / [CH ₃ (CH ₂) ₂ CH ₃]	
(c)(iv)	M1 value for K_c $K_c = \frac{\text{value of methylpropane in (ii)}}{\text{value of butane in (iii)}} = 0.7/0.3 = 2.3 (3)$	
	M2 units consistent with expression used in M1 no units / dimensionless / none	

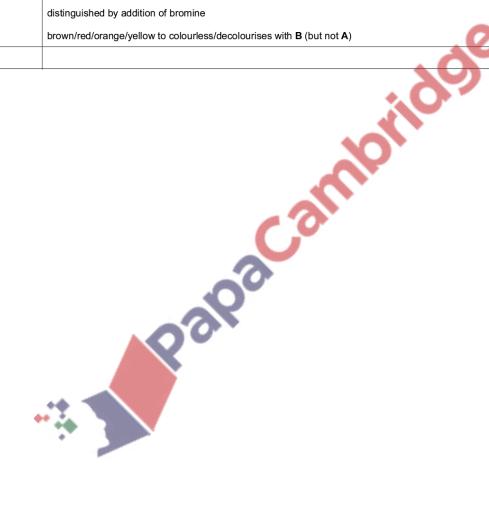
94. $9701_s18_ms_23~Q: 2$

(a)(i)	(molecules / isomers with) the same molecular formula / same number of atoms of each element	1
	different structural formulae / different structures	1
(a)(ii)	(Molecules / isomers) with the same (molecular and) structural formula	1
	different arrangement of atoms in space / different spatial arrangement of atoms.	1
(b)(i)	two Hs on one of the C=C carbons / terminal C / C-1	1
	no chiral C / no C with 4 different groups / atoms / chains attached has a super(im)posable mirror image	1
(b)(ii)	H H—C—H H H—C—H H—C——C H—C—H	1
	2-methylbut-1-ene	1
(b)(iii)	structure $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1
	trans-pent-2-ene or cis-pent-2-ene or <i>E</i> - or <i>Z</i> -	1
	· ii A Palpa Cainilo	

95. $9701_s17_ms_23$ Q: 3

(a)(i)	(enthalpy / energy change) when one mole of a compound is formed	
	from its elements in their standard states / standard conditions	
(a)(ii)	$(\Delta H_r = \sum \Delta H_t \text{ products} - \sum \Delta H_t \text{ reactants})$ -196 = 2 $\Delta H_t \text{ SO}_3$ - (2 × -296.8) 2 $\Delta H_t \text{ SO}_3$ = -196 + (2 × -296.8) = -789.6	
	$\Delta H_1 SO_3 = -394.8 \text{ (kJ mol}^{-1})$	
(b)(i)	Mark to right of original E_a	
(b)(ii)	2 marks for any two points: Benefit of using a catalyst in terms of increasing rate or economic benefit i.e. (less heat required) Creates alternative pathway with lower E _a More molecules with E > E _a	
(b)(iii)	(rate) increases AND correct explanation in terms of 'more collisions'	
	more successful collisions per unit time / higher chance of successful collisions per unit time / higher proportion of successful collisions per unit time	
	(yield) increases and shifts equilibrium to the right / in the forward direction / towards SO ₃ / towards the product / in exothermic direction	
	to oppose the change or oppose the increase in pressure / fewer molecules on RHS so eqm moves to right (to oppose change)	
(c)(i)	$SO_2 = 0.01 \text{ (mol)}$ AND $SO_3 = 0.99 \text{ (mol)}$	
(c)(ii)	n _{TOT} = 1.505	
	$pO_2 = 1.50 \times 10^5 \times (0.505 / 1.505) = 5.03 \times 10^4 \text{ (Pa)}$	
(d)(i)	$(\kappa_p =) \frac{pSO_3^2}{pO_2 \times pSO_2^2}$	
(d)(ii)	0.1946737305	
	Pa ⁻¹	
	Total:	

96. 9701_s17_ms_23 Q: 4


(a)	cracking	1
(b)	In any order CH ₂ =CHCH ₂ CH ₃ /CH ₂ CHCH ₂ CH ₃ /CH ₂ CHC ₂ H ₅ AND CH ₃ CH=CHCH ₃ /CH ₃ CHCHCH ₃ AND (CH ₃) ₂ C=CH ₂ /(CH ₃) ₂ CCH ₂	1
(c)(i)	(different) molecules with the same (molecular and) structural formula	1
	(due to) different arrangement in space caused by C=C / double bond	
(c)(ii)	H_3C — C	
		'
	dipole on H–Br in correct orientation AND arrow from the H-Br bond to the Br ^{b-}	
	correct carbocation from the structure with C=C drawn	
	Br with lone pair, negative charge AND arrow from lone pair to the positively charged carbon atom of intermediate	
(d)(i)	a (tetrahedral) atom with four different groups / atoms / substituents attached OR a carbon (atom) with four different groups / atoms / substituents attached	
(d)(ii)	but-1-ene	
(d)(iii)	Br H 3CCH ₂ Br H 3CCH ₂ Br One 3D structure of 2–bromobutane which must have 2 bonds shown the same and two different, i.e. three bond types altogether, e.g. two solid lines, one wedge and one dash. If two bonds are drawn in the plane of the paper, i.e. single solid lines, they must not be at 180 degrees to each other.	
	Second structure either mirror of first OR all bonds drawn the same with position of two groups swapped.	
(d)(iv)	intermediate / (secondary carbo) cation from ${\bf X}$ is more stable ora OR charge density of ${\bf C}^{\dagger}$ (of the intermediate of ${\bf X}$) is reduced	
	(due to) electron-releasing character / (positive) inductive effect of alkyl groups / / due to electron releasing alkyl group	
(e)(i)	(2–)methylpropene / (2–)methylprop–1–ene	
(e)(ii)	H H H H H H H H H H H H H H H H H H H	
	Total:	1

97. $9701_s16_ms_21$ Q: 4

(2)	CH ₂ =CHCH ₂ CH ₃ /CH ₂ CHCH ₂ CH ₃	
(a)	AND	
	CH ₃ CH=CHCH ₃ /CH ₃ CHCHCH ₃	[1]
(b)	CH ₂ =CHCH ₂ CH ₃ /CH ₂ CHCH ₂ CH ₃ AND	
	(CH ₃) ₂ C=CH ₂ /(CH ₃) ₂ CCH ₂	[1]
(c)	H H ₃ C-C H C-H	
	H ₃ C′	[1]
	trans-but-2-ene (or E) cis-but-2-ene (or Z)	[1]
(d)	B is CH ₂ =CHCH ₂ CH ₃ OR CH ₃ CH=CHCH ₃ OR (CH ₃) ₂ C=CH ₂	[1]
	distinguished by addition of bromine	[1]
	brown/red/orange/yellow to colourless/decolourises with B (but not A)	[1]

98. 9701_S15_ms_21 Q: 4

(a)	A = OH Chain isomerism	[1] [1] [1]
	position isomerism	[1]
	C = Chain isomerism OH	[1] [1] [1]
	OR chain OR position isomerism	
	C = D = OH	
(b) (i)	but-1-ene/1-butene but-2-ene/2-butene	[1] [1]
(ii)	but-2-ene AND two different groups on each carbon (of C=C) double bond means no free rotation	[1] [1]
(iii)	H H H H C H	[1+1]
	and (either way round)	

99. 9701_m21_ms_22 Q: 2

Question	Answer	Marks
2(a)	kills bacteria/microbes/micro-organisms	1
2(b)(i)	$Cl(g) - e^- \rightarrow Cl^+(g)$	1

Question	Answer	Marks
(b)(ii)	M1: increasing proton number but similar shielding M2: greater attraction of nucleus (for outer / valence electrons)	2
(c)(i)	M1: (thermal stability) decreases (down group) M2: (H—X) bond energy / strength decreases	2
(c)(ii)	(+)6, (+)4, -2	1
(c)(iii)	halides are better / stronger / more able reducing agents / are more easily oxidised down group	1
(d)(i)	when a species is both oxidised and reduced	1
(d)(ii)	$Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$	1
(e)(i)	CI C	2
(e)(ii)	M1: • (AICI ₃ / solid) disappears • misty / steamy fumes • temperature increases M2: hydrolysis	2
(f)(i)	simple / molecular AND covalent	1
Question	Answer	Marks
(f)(ii)	M1: 11.54 ÷ 143.4 = 0.0805 M2: so ratio Z :C <i>l</i> is 1:4 / <i>n</i> = 4	2
(g)(i)	(free-)radical substitution	1
(g)(ii)	ultraviolet (UV) light / sunlight	1
(g)(iii)	(1s²) 2s² 2p⁶ 3s² 3p⁵	1
(g)(iv)	C1· AND CH2C12	1
(g)(v)	termination	1
(g)(vi)	CHCI3 OR (CH2CI)2	1

100. 9701_w19_ms_21 Q: 1

(a)(ii)	It oxidises chlorine from –1 to 0	1
(a)(ii)	effervescence / fizzing / bubbling OR green GR GR GR GR GR GR Solid dissolves / disappears / soluble	1
(b)	M1: decreases (down the group)	3
	M2: increasing induced dipoles	
	M3: greater number of electrons	
(c)(i)	M1: Cl_2 + 2NaOH \rightarrow NaC l + NaC l O + H $_2$ O	2
	M2: chlorine is oxidised and reduced	
(c)(ii)	NaC iO ₃ / sodium chlorate(V)	1
(d)	M1: chloric(I) acid / hypochlorous acid / HC iO	2
	M2: kills bacteria / micro-organisms / microbes	
(e)(i)	ultra-violet (light) / sunlight	1
(e)(ii)	$C_2H_6 + C_b \rightarrow C_2H_5Cl + HCl$	1

 $101.\ 9701_w19_ms_21\ Q\!:\ 3$

(a)(i)	cracking	1
(a)(ii)	enthalpy change of combustion / ∆H _c is high / large energy release (per mole / per unit mass)	1
	OR combust / burn easily	
(a)(iii)	$C_4H_8 + 4O_2 \rightarrow 4CO + 4H_2O$	1
(a)(iv)	M1: infrared spectroscopy	2
	M2: Compare / measure (characteristic) wavelengths	
(b)(i)	$C_4H_4S(I) + 6O_2(g) \rightarrow 4CO_2(g) + 2H_2O(I) + SO_2(g)$ • correct species	2
	balancing state symbols	
	Award one mark for two correct bullet points, award two marks for all three correct.	
(b)(ii)	M1 (enthalpy change when) 1 mol of a substance	2
	M2 EITHER burns / combusts / reacts in excess air / oxygen	
	OR completely burns / combusts / reacts in air / oxygen	
(b)(iii)	M1 m = 200 and $\Delta T = 37.5-18.5$	2
	M2 $Q = mc \Delta T = 200 \times 4.18 \times (37.5 - 18.5) = 15.884 (J)$	
(b)(iv)	M1 mol of thiophene used	2
	$= 0.63 / 84.1 \text{ OR } 7.49(1082045) \times 10^{-3}$	
	M2 calculation ÷ 1000 AND negative sign	
	$\Delta H_{c} = \frac{-\text{(iii)}}{1000} \div n = \frac{-\text{(iii)}}{21000} \div (0.63 / 84.1)$	
	= -2120 (-2120.39) (kJ mol ⁻¹)	

102. 9701_m18_ms_22 Q: 2

(a)(i)	simple molecular regular arrangement (of C ₆₀ molecules)	2
(a)(ii)	C ₆₀ has (weak) intermolecular / VdW / London / dispersion / id–id forces (and covalent bonds)	4
	diamond has covalent bonds	
	(diamond's) bonds are stronger	
	more energy required / lots of energy to break (covalent bonds in diamond)	
(b)(i)	(a molecule / compound that is made up of) carbon and hydrogen (atoms) only	1
(b)(ii)	add bromine (water) / Br ₂ (aq)	2
	(brown to) colourless / decolourised	
(c)(i)	addition	1
(c)(ii)	$(n_{C60} = 0.144/720 =) 2 \square 10^{-4}$	1
(c)(iii)	$pV = nRT$: $\Delta n = (p_1 - p_2)V / RT$ $\Delta n = (1.00 \Box 10^5 - 2.21 \Box 10^4).100 \Box 10^{-6} / 8.31 \Box 293$ = 0.00320	2
(c)(iv)	(C ₆₀ :H ₂ =) 2.00 □ 10 ⁻⁴ : 0.00320 or 1:16	2
	<u>C60</u> H ₃₂	
(d)(i)	giant (molecular) (each Si has four) covalent (bonds)	2
(d)(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	1
(d)(iii)	$Mg_2Si(s) + 4HC\mathit{l}(aq) \rightarrow SiH_4(g) + 2MgC\mathit{l}_2(aq)$ species AND balancing state symbols	2
(d)(iv)	tetrahedral	1
(d)(v)	$SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O$	1

 $103.\ 9701_s18_ms_21\ Q\hbox{:}\ 2$

-		
(a)	Different (hydrocarbon) molecules have different numbers of electrons	1
	so different strengths / numbers / amount of VdW / IMFs / id-id	1
(b)	Produces more useful / more valuable / higher demand substances / alkanes / alkenes	1
(c)(i)	$C_{12}H_{26} \rightarrow 2C_2H_4 + C_8H_{18}$	1
(c)(ii)	addition polymerisation	1
(c)(iii)	two from save space in landfill avoid litter prevent eyesore non-biodegradable conserves non-renewable resources harmful incineration products harmful to wildlife	2
(c)(iv)	H C=C H H H H	
	correct monomer	1
	fully displayed	1

104. 9701_s18_ms_22 Q: 3

(a)(i)	combustion	1
(a)(ii)	$C_8H_{18} + 12\%O_2 \rightarrow 8CO_2 + 9H_2O$	
(// /	correct species	1
	correct balancing	1
	COTTECT Data Horizon	<u>'</u>
(b)(i)	cracking	1
(b)(ii)	-CH(CH ₃)CH(CH ₃)-	
	OR	
	- C - C - C - C - C - C - C - C - C - C	
	even number of C's in correct backbone with 'end bonds' AND no C=C	1
	CH ₃ and H on each of two C drawn for 1 repeat unit only AND all the carbons must be tetravalent	1
(b)(iii)	addition	1
c(i)	catalytic converter / catalyst	1
c(ii)	$2CO + NO_2 \rightarrow 2CO_2 + \frac{1}{2}N_2$	1
c(iii)	(photochemical) smog / fog / haze	1
	OR	
	global dimming	
(d)(i)	any 2 from:	2
	lowers pH / increases acidity of rivers / lakes / oceans / seas / soil	
	kills/harms fish OR harms / kills coral / plants / crops / trees	
	leaches (toxic) aluminium (ions / salts) from soil (into rivers / lakes)	
	leaches away soil nutrients	
	damages / weathers / erodes buildings / statues	
(d)(ii)	$NO_2 + SO_2 \rightarrow NO + SO_3$	1
	$SO_3 + H_2O \rightarrow H_2SO_4$	1
(d)(iii)	(it is) regenerated / not used up / undergoes temporary chemical change / recovered unchanged	1
	$NO + \frac{1}{2}O_2 \rightarrow NO_2$	1

 $105.\ 9701_s17_ms_23\ Q:\ 1$

(a)	(molecules / isomers with) the same molecular formula / same number of atoms of each element	1
	different structural / displayed formulae / different arrangement of bonds	
(b)(i)	4	
(b)(ii)	6	
(b)(iii)	molecular = C ₄ H ₈	
	empirical = CH ₂	
	using alternative supplied data molecular = C_6H_{12}	
	empirical = CH ₂	
(b)(iv)		
	alternative using supplied data: any two	
(b)(v)	correct conversions of data to SI / consistent units $P = 100\ 000; V = 25 \times 10^{-6}; T = 310$	
	calculation of $n = \frac{100 \times 10^3 \times 25 \times 10^{-6}}{8.31 \times 310}$	•
	calculation of mass m (= $n \times M_r$) AND answer correct to 3sf $m = 9.705 \times 10^{-4} \times 56 = 0.0543$ (g)	
	Alternative answer for using C_6H_{12} : $m = 9.705 \times 10^{-4} \times 84 = 0.0815$ (g)	
	Total:	1

 $106.\ 9701_w15_ms_21\ Q:\ 3$

(a) (i)	structural isomers: (different molecules with) same molecular formula but different structural formulae	[1]
	chiral: has a carbon/C attached to 4 different groups/atoms/chains OR has no plane/line of symmetry/has non-superimposable mirror images	[1]
(ii)	CH ₃ CH ₂ CH(CH ₃)CH ₂ CH ₃ 3-methylhexane	[1] [1]
	CH ₃ CH(CH ₃)CH ₂ CH ₃ /(CH ₃) ₂ CHCH(CH ₃)CH ₂ CH ₃ 2,3-dimethylpentane	[1] [1]
(b) (i)	$C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O$	[1]
(ii)	$C_7H_{16} + 4O_2 \rightarrow 7C + 8H_2O$	[1]
(iii)	global dimming/PAN/smog/global warming	[1]
(c) (i)	(Free) Radical Substitution	[1]
(ii)	$Cl_{2} \rightarrow 2Cl^{\bullet}$ OR $Cl_{2} \rightarrow Cl^{\bullet} + Cl^{\bullet}$ $C_{7}H_{16} + Cl^{\bullet} \rightarrow {}^{\bullet}C_{7}H_{15} + HCl$ ${}^{\bullet}C_{7}H_{15} + Cl_{2} \rightarrow C_{7}H_{15}Cl + Cl^{\bullet}$	[1]
	$C_7H_{16} + Cl \rightarrow {}^{\bullet}C_7H_{15} + HCl \\ {}^{\bullet}C_7H_{15} + Cl_2 \rightarrow C_7H_{15}Cl + Cl {}^{\bullet}$	[1] [1]
	${}^{\bullet}C_{7}H_{15} + Cl^{\bullet} \rightarrow C_{7}H_{15}Cl$ OR ${}^{\bullet}C_{7}H_{15} + {}^{\bullet}C_{7}H_{15} \rightarrow C_{14}H_{30}$	[1]
	Initiation; Propagation; Termination (used correctly)	[1]

107. 9701_s21_ms_21 Q: 5

Question	Answer	Marks
(a)(i)	(compounds / molecules) containing only / entirely carbon and hydrogen (atoms)	1
(a)(ii)	crude oil	1
(b)(i)	(thermal) cracking	1
(b)(ii)	structure of W CH ₃ H ₂ C CH ₂ H ₂ C CH ₃ OR CH ₃ (CH ₂) ₃ CH ₃ OR	1
(c)(i)	CO ₂ H / carboxylic acid	1
(c)(ii)	M1 (add) Br ₂ (aq)/bromine water	1
	M2 (solution) turns (from brown / orange / red to) colourless / decolorises OR brown / orange / red fades	1
(d)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
(e)(i)	carbon dioxide / CO ₂	1
(e)(ii)	CO / hydrocarbons AND toxic / poisonous / harmful to health / (catalyses formation of) photochemical smog	1

108. 9701_w21_ms_22 Q: 1

Question	Answer	Marks
(a)(i)	M1 (HI/I/iodine / hydrogen iodide has a) greater number of electrons	2
	M2 greater induced dipoles (between molecules)	
(a)(ii)	M1 bar at HF shows any boiling point above HI on graph	2
	M2 explanation of difference in boiling point of a sample of HF in terms of strength (sum of) hydrogen bonds (and induced dipoles in HF) are stronger than (sum of) induced dipoles (and permanent dipoles in HC1/HBr/HI)	
(b)	(enthalpy / energy change) when one mole of a compound is formed	2
	from its elements in their standard states	
(c)(i)	$K_p = \frac{p H I^2}{p H_2 \ p I_2}$	1
(c)(ii)	28.76 OR 28.8 OR 29	1
(c)(iii)	EITHER option 1 which assumes ΔH _{reaction} is (still) endothermic (using the value shown in (b)).	2
	M1 (K_p) decreases AND endothermic / $\Delta H_{(l)} = +$ / positive	
	$\textbf{M2} \ \text{reaction favours formation of reactants / hydrogen and iodine OR (product) yield / partial pressure of HI decreases / equilibrium shifts to the left}$	
	OR option 2 which realises that $\Delta H_{reaction}$ is in fact exothermic (using bond energy data in Data Booklet)	
	M1 (K_p) increases AND exothermic / $\Delta H_{(j)}$ = + / negative M2 reaction favours formation of products / hydrogen iodide yield increases / partial pressure of HI increases / equilibrium shifts to the right	
(d)(i)	$4HI + O_2 \rightarrow 2I_2 + 2H_2O$	1

Question	Answer	Marks
(d)(ii)	M1 I / iodine (increases) oxidation number −1 → 0 so oxidation / is oxidised OR HI / is oxidised as I (increases) oxidation number −1 → 0	2
	M2 O (decreases) oxidation number $0 \rightarrow -2$ so reduction / is reduced	
(e)	M1 pressure increases M2 (pressure goes up as) number of moles/molecules increases in ratio 3 (gas) reactants to 5 (gas) products OR pressure is (directly) proportional to number of moles/molecules	2
(f)(i)	M1 correct bonding pairs M2 correct number of remaining outer electrons on each atom	:
(f)(ii)	hydrolysis	
(f)(iii)	proton donor / H+ donor fully dissociates / fully ionises	2
(f)(iv)	H ₂ PO ₃ -	
(g)(i)	M1 2-iodopropane – formed from a (more) stable (secondary) (carbo)cation/intermediate M2 (because of) greater (positive) inductive effect / (+)I of two alkyl groups OR (because of positive) inductive effect / (+)I of more R / more methyl / more alkyl groups	

Question	Answer	Marks
(g)(ii)	H_3C H_3C H_3C H_3C H_4 H_3C H_4 H_7	3
	M3 correct carbocation AND product for 2-iodopropane	

$$109.\ 9701_s20_ms_23\ Q\hbox{:}\ 4$$

(a)	M1 (no reaction) not enough energy M2 bromine (free) radicals are not produced OR homolytic fission of bromine does not occur.	:
(b)(i)	free-radical substitution	1
(b)(ii)	$C_6H_{14} + (\cdot)Br \rightarrow (\cdot)C_6H_{13} + HBr$	1
(b)(iii)	$(\cdot)C_6H_{13} + Br_2 \rightarrow C_6H_{13}Br + (\cdot)Br$	1
(b)(iv)	$(\cdot)C_6H_{13} + (\cdot)Br \rightarrow C_6H_{13}Br$	1
(c)(i)	CH ₃ (CH ₂) ₃ CH=CH ₂	1
(c)(ii)	cold AND acidified AND dilute 2 marks for 3 correct conditions 1 mark for 2 correct conditions	2
(d)(i)	addition OR reduction	1
(d)(ii)	M1 only sigma / σ (bonds) in hexane / alkanes M2 B has sigma σ (bonds) and a / one pi / π (bond)	2

$$110.\ 9701_w20_ms_21\ Q\!\!: 4$$

(a)(i)	M1: (Volatility) decreases (down the group)	
	M2: more electrons so greater intermolecular forces / intermolecular attractions	
	OR more electrons so greater VdW between molecules	
(a)(ii)	(HI has the) lowest bond enthalpy	
(a)(iii)	M1: HF has permanent dipole(-dipole forces) AND HI has ((only)) instantaneous dipole / induced dipole (forces) / permanent dipole(-dipole forces)	
	M2: IMF's in HI are weaker (than IMF's in HF)	
(a)(iv)	3I ₂ + 6NaOH → 5NaI + NaIO ₃ + 3H ₂ O	
(b)(i)	HI(g)/PI ₃ /P and I ₂	
(b)(ii)	Electrophilic addition	
(c)(i)	2(-)iodo(-)2(-)methylbutane	
(c)(ii)	Nucleophilic substitution / S _N	
(c)(iii)		
(c)(iv)	(L has) two identical / two methyl groups attached to one end / one carbon of the C=C / double bond	
(c)(v)	ethanoic acid / CH₃COOH	
(c)(vi)	$\text{CH}_{3}\text{COCH}_{3} + 3I_{2} + 4\text{OH}^{-} \rightarrow \text{(1)CH}_{3}\text{COO}^{-} + 3H_{2}\text{O} + 3I^{-} + \text{CHI}_{3}$	
	M1: correctly balanced M2: CHI ₃ product	
(c)(vii)	yellow ppt / yellow solid	

$111.\ 9701_m19_ms_22\ Q:\ 1$

(a)	strong triple bond / strong N≅N OR high activation energy / E₃ OR non-polar	1	
(b)(i)	$3Mg + N_2 \rightarrow Mg_3N_2$	1	
(b)(ii)	solid disappears	1	
(c)(i)	(it is used to make) fertilisers	1	
(c)(ii)	M1 CaO displaces NH ₃ (from its salt / NH ₄ +)	2	
	M2 CaO is a stronger base / more basic (than NH ₃)		
(d)(i)	NO NO ₂	1	
	(+)2/(+)II (+)4/(+)IV		
(d)(ii)	$M1 \frac{1}{2}N_2 + O_2 \rightarrow NO_2$	2	
	M2 Mg(NO ₃) ₂ \rightarrow MgO + 2NO ₂ + $\frac{1}{2}$ O ₂		
(d)(iii)	M1 +82 (= $E_{o=o} - 2E_{N\to O}$) = (+)496 - 2 × $E_{N\to O}$	2	
	M2 $E_{N\to O} = \frac{1}{2} \times (496-82) = \frac{1}{2} \times 414 = 207 \text{ (kJ mol}^{-1})$		
(e)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	M1 curly arrow from C=C to $N^{\delta+}$ AND curly arrow from N—C l to $Cl^{\delta-}$		
	M2 intermediate AND curly arrow from lone pair on Cl^- to $C(+)$		

$112.\ 9701_m19_ms_22\ Q:\ 4$

(a)	3-chloroprop-1-ene	1
(b)(i)	ultra-violet (light) / sun(light)	1
(b)(ii)	$\begin{array}{ccc} CH_2=CHCH_3 + Cl^\bullet & \to & CH_2=CHCH_2^\bullet + HCl \\ OR \ C_3H_6 + Cl^\bullet & \to & C_3H_5^\bullet + HCl \end{array}$	1
(b)(iii)	free-radical (substitution) reactions are uncontrolled OR further chlorination / substitution occurs	1
(b)(iv)	SOC1 ₂ OR PC1 ₅ OR PC1 ₃ OR <u>c</u> (oncentrated) HC1	1
(c)(i)	cold, dilute acidified KMnO ₄ / potassium manganate(VII)	1
(c)(ii)	M1 catalyst M2 ethanoic acid / CH ₃ CO ₂ H	2
(c)(iii)	nucleophilic substitution / S _N 2	1
(c)(iv)	OH HOCOOH M1 hydrolysed nitrile on straight-chain 4C backbone M2 3,4-diol	2
(d)	M1 major product formed from more stable intermediate / carbocation OR (intermediate has) 2°carbocation which is (more) stable M2 (positive) inductive effect /(+)I of alkyl groups (on the intermediate)	2

 $113.\ 9701_s19_ms_22\ Q:\ 4$

(a)	name of source crude oil / petroleum	
	outline of separation of hydrocarbons (separation of molecules according to) different boiling points	
(b)(i)	cracking	
(b)(ii)	$2C_7H_{16} \rightarrow C_4H_{10} + C_6H_{14} + 2C_2H_4$	
(c)	method 1 method 2	
	M1 1/28 (= 0.035714) 1:88/28 (= 3.14286)	
	M2 2 × M1 (= 1 / 14 = 0.07143) M1 / 44 (= 0.071429)	
	M3 $M2 \times 24 = 1.7 \text{ dm}^3$ $M2 \times 24 = 1.7 \text{ dm}^3$	
(d)(i)	unpaired electron(s)	
(d)(ii)	homolytic (fission)	
	one electron goes to each chlorine / atom	
	OR	.0,
	pair of electrons is shared out (equally between the two atoms)	
(d)(iii)	propagation	
(d)(iv)	$CH_4 + (\bullet)Cl \rightarrow (\bullet)CH_3 + HCl $ OR $CH_4 + (\bullet)Cl \rightarrow HCl + CH_3(\bullet)$	
(d)(v)	M1 identify bond types in alkanes and alkenes	
	bonds in alkanes are (all) sigma / σ	
	AND	
	alkenes have (C = C made of) sigma AND pi / σ AND π	
	M2 electrons in π (of the C = C) are responsible for the reaction	
	electrophiles are attracted to / attack to electrons in \mathbf{pi} / π	
	OR	
	electrophiles react with \mathbf{pi} / π	

 $114.\ 9701_S15_ms_22\ Q:\ 3$

(a) (i)	Bond breaking = C <i>l</i> -C <i>l</i> = 242 C-H = 410 = 652kJ	[1]
	Bond forming = C-C <i>l</i> = 340 H-C <i>l</i> = 431 = 771 kJ	[1]
	Enthalpy change = 652 – 771 = –119	[1]
(ii)	UV/High T/sunlight	[1]
(iii)	Initiation $Cl_2 \rightarrow 2Cl^{\bullet}$	[1]
	Propagation $C_2H_6 + Cl^{\bullet} \rightarrow {}^{\bullet}C_2H_5 + HCl$ ${}^{\bullet}C_2H_5 + Cl_2 \rightarrow C_2H_5Cl + Cl^{\bullet}$ Termination ${}^{\bullet}C_2H_5 + {}^{\bullet}C_2H_5 \rightarrow C_4H_{10}$	[1] [1]
	Termination ${}_{\bullet}C_2H_5 + {}_{\bullet}C_2H_5 \rightarrow C_4H_{10}$	[1]
	All three names correctly assigned	[1]
(b) (i)	ethene	[1]
(ii)	KOH/NaOH	[1]
	ethanolic AND heat/reflux	[1]
(iii)	H ₂ AND Pt or Ni (catalyst)	[1]
	-70	

 $115.\ 9701_S15_ms_23\ Q:\ 4$

(a) (i) H ₃ C CH ₂ OH	
H ₃ C−С−С−СH ₃ I I HO ОН	[1]
(ii) CH_3 $H_3C-C=0$	[1]
СООН О=С СН ₃	[1]
(b) (i) H_3C CH_2OH H_3C CH_2OH H_3C CH_2OH H_3C CH_3 H_3	[1] [1] [1]
(ii) dipole is induced by proximity to C=C	[1]
(iii) Optical	[1]
(iv) H ₂ COH H ₂ COH Br CH ₃ H ₃ C CH ₃	[1+1]

116. 9701_w18_ms_21 Q: 3

(a)(i)	M1 gas / vapour (particles / molecules) in equilibrium (with liquid / solid)	2
	M2 greater proportion of gas (particles) than liquid (particles) (in comparison to a liquid of lower vapour pressure)	
(a)(ii)	-17.(0) (kJ mol⁻¹) ✓ ✓ ✓	3
	M1 $\Delta H_r = x(-482.2) + y(-92.3) - v(-103.2) - w(-273.3)$ where x y v and w are integers ≥1 (ignore stoichiometry)	
	M2 use of correct stoichiometry where $x = 1$ $y = 2$ $v = 1$ and $w = 2$	
(a)(iii)	M1 in a different phase / state from reactants	3
	M2 a substance that speeds up a (chemical) reaction	
	M3 catalyst is regenerated / not used up / undergoes temporary chemical change / recovered unchanged	
(b)(i)	Human activity creates / additional / more/increase / thicker layer in greenhouse gas(es) / CHC1F2 OR	1
	Human activity has an impact on climate change / temperature at earth's surface / temperature of sea	
(b)(ii)	M1 traps (more)heat	2
	M2 (in the atmosphere leading to) greater global warming or wtte	
(b)(iii)	ozone depletion / thinning	1
(c)(i)	addition	1
(c)(ii)	F F	1
	F F	
(c)(iii)	molecule unreactive / inert	1
(c)(iv)	non-biodegradable	2
	creates toxic / harmful gases / HF / CO ₂ / CO if burnt	

117. 9701_m16_ms_22 Q: 4

(a) (i)	<u>C₄H₁₀</u>	[1]
(ii)	<u>C₄H₉</u>	[1]
(iii)	ОН	[1]
(b)	$C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$	[1]
(c)	sulfur dioxide would be produced on combustion (which contributes to) acid rain	[1] [1]
(d) 🦫	M1 = H has more/greater/stronger van der Waals'/intermolecular forces than G / ora M2 = (because) H has more electrons (than G) M3 = J has hydrogen bonding (between molecules) M4 = strong(er)/great(er) forces require AND high/more energy to overcome	[1] [1] [1] [1]
(e)	NaOH(aq)	[1]

118. 9701_s16_ms_23 Q: 3

(a) (i)	vaporise/boil/turn to gas	[1]
(ii)	increasing molecular size/no of carbon atoms per molecule/length of carbon chain	[1]
(iii)	increasing b.pt/decreasing volatility increasing viscosity increasing density increasing depth of colour decreasing flammability/decreasing 'cleanliness' of flame owtte	[1] [1]
(b) (i)	$C_{12}H_{26} \rightarrow 2C_2H_4 + C_8H_{18}$	[1]
(ii)	ethene use = making polythene/plastic/polymers feature of ethene = double bond/unsaturated octane/alkane use = fuel/petrol feature of octane/alkane = flammability/releases energy when burned/combusted	[1] [1] [1] [1]
(c) (i)	(produced by) reaction of (atmospheric) oxygen and nitrogen due to high temperature/engine provides energy/combustion provides energy	[1] [1]
(ii)	$2\text{NO} + 2\text{CO} \rightarrow \text{N}_2 + 2\text{CO}_2 \text{ / NO} + \text{CO} \rightarrow \frac{1}{2}\text{N}_2 + \text{CO}_2$	[1]
(iii)	NO + $\frac{1}{2}$ O ₂ \rightarrow NO ₂ NO ₂ + SO ₂ \rightarrow SO ₃ + NO SO ₃ + H ₂ O \rightarrow H ₂ SO ₄ / 2H ⁺ + SO ₄ ²⁻ / H ⁺ + HSO ₄ ⁻	[1] [1] [1]
(iv)	lowers pH of rivers/lakes/kills fish leaches (toxic) aluminium from soil (into rivers/lakes) leaches away soil nutrients damage to buildings/statues/trees/plants/crops ocean acidification/damage to coral	[1] [1] [1] [1] [1]

$119.\ 9701_s21_ms_21\ Q:\ 6$

Question		Answer	Marks
(a)	addition		1
(b)	M1 catalys	= sulfuric acid / phosphoric(V) acid	1
	M2 condition	ns of reaction = steam / heat (and pressure)	1
(c)		σ	2
	C ₃ H ₆	8 1	
	C ₃ H ₈ O	11 0	
(d)(i)	***	able = CH ₃ C*(H)(CH ₃) Blo = CH CH Ct/(H) (CH ₃)	1
		ble - Ch ₃ Ch ₂ C'(h ₂)/	
		(positive) inductive effect of two alkyl groups electron donation of two alkyl groups owtte	1
(d)(ii)	propan-2-o		1
(e)(i)	elimination		1
(e)(ii)	M1 NaOH/	кон	1
	M2 ethanol	c solution / ethanol / alcohol + heat	1

120. 9701_w21_ms_21 Q: 2

Question		Ans	swer		Marks
(a)(i)	hydrogen / H ₂				1
(a)(ii)	Ca(NO ₃) ₂ → CaO + 2NO ₂ + ½0	D ₂			1
(a)(iii)	(thermal stability) increases				1
(a)(iv)	$CaCO_3 + H_2O + CO_2 \rightarrow Ca(HC)$	O ₃) ₂			1
(b)	reduces acidity of soil				1
(c)(i)	Mixing / overlap / combination of	one / an s and one / a p orbita	al		1
(c)(ii)	Sketch a diagram to show HOW M1	' two sp hybrid orbitals can fo	rm a SIGMA bond	.0,	2
(d)(i)	M1 moles of NH ₃ = $1.50 \times 10^6 \times$ M2 mass of CaCN ₂ = $\frac{\frac{1}{2} \times M1 \times 8}{10^6}$, 20	2
(d)(ii)		CH₃CH₂CN	CH ₃ CH ₂ CO ₂ H		3
		CH ₃ C(OH)(CN)CH ₃	V		

121. 9701_s20_ms_22 Q: 4

(a)(i)	Bromine / Br	1
(a)(ii)	$Ag^{+}(aq) + X^{-}(aq) \rightarrow AgX(s)$ OR $Ag^{+}(aq) + Br(aq) \rightarrow AgBr(s)$	1
(a)(iii)	M1 reagent Add (aqueous) ammonia M2 expected result EITHER (Dilute ammonia) – partial amount precipitate dissolves OR not much precipitate dissolves OR add concentrated ammonia – precipitate dissolves	2
(b)(i)	CH ₃ CH ₂ CH ₂ CH ₂ Br	1
(b)(i)	M1 primary/ 1º (carbo)cation formed is not very stable M2 EITHER (as) only one alkyl group exerting an inductive effect OR only one alkyl group so the charge is (more) localised on the C+	2
(c)(i)	elimination	1
(c)(ii)	C_4H_8Cl + NaOH \rightarrow C_4H_8 + NaCl + H ₂ O	1
(c)(iii)	ONLY	1
(c)(iv)	M1 2-chloro(-2-)methylpropane M2 1-chloro(-2-)methylpropane ALLOW in any order	2

 $122.\ 9701_s19_ms_23\ Q:\ 5$

(a)(i)	pentanenitrile	1
(a)(ii)	a lone pair / electron pair donor	1
(a)(iii)	(:)CN-/-(:)CN/ cyanide ion	1
(a)(iv)	Br (atom) is replaced (with / by CN / nitrile)	1
(b)	M1 reagent Ammonia	2
	M2 conditions heat with under pressure / heat in a sealed tube	
(c)(i)	M1 Increasing reactivity from C $l ightarrow $ Br $ ightarrow $ I	2
	M2 Due to decreasing strength of C-X bond (from C-C1 to C-Br to C-I) OR Less energy needed to break C-X (from C-C1 to C-Br to C-I)	
(c)(ii)	M1 tertiary/3° halogenoalkane	3
	M2 (carbo)cation / intermediate is stable	
	M3 due to (3) electron releasing/donating methyl groups / + I groups (attached to central C) OR (positive) inductive effect of the (three) methyl groups /	
(c)(iii)	Any formula / name for any primary halogenoalkane i.e. 1-chlorobutane / 1-bromobutane / 1-iodobutane	1

 $123.\ 9701_s19_ms_23\ Q:\ 6$

(a)(i)	Orange / brown to colourless / decolourises	1			
(a)(ii)	any non-ambiguous structures of:				
	$X (CH_3)_2C = CH_2/(CH_3)_2CCH_2$	1			
	$Y CH_3CH_2CH = CH_2/C_2H_5CHCH_2$	1			
	Z CH ₃ CH = CHCH ₃ /CH ₃ CHCHCH ₃	1			
(a)(iii)	C ₄ H ₈	1			
(b)(ii)	V = primary / 1° alcohol	1			
	W = tertiary / 3° alcohol	1			
(b)(ii)	$CH_3(CH_2)_2CH_2OH + Na \rightarrow CH_3(CH_2)_2CH_2ONa + \frac{1}{2} H_2$	1			
(b)(iii)	M1 Reagent H*/Cr ₂ O ₇ ²⁻	3			
	M2 Observations for V orange to green				
	M3 Observations for W no change / remains orange				

 $124.\ 9701_s18_ms_23\ Q:\ 4$

(a)(i)	2-bromobutane					
(a)(ii)	ketone					
(b)		(CH₃)₃CBr	(CH ₃) ₂ CHCH ₂ Br	CH ₂ BrCH ₂ CH ₂ CH ₃		
	3 correct = 2 marks 2 correct = 1 mark					
(c)(i)	S = substitution N = nucleophilic					
(c)(ii)	H ₃ C CH ₂ M1 = dipole and curly arr M2 = intermediate carboo M3 = OH ⁻ with lone pair a	ation IGNORE CH	H₂CH₃ shown as C₂H₅		NO.	
(d)	C ₄ H ₉ C <i>l</i> slower (the C ₄ H ₉ I faster (than C-C <i>l</i> bond strong C-I bond weaker mark for each point, mark	$C_4H_9Br)$ er than C– Br OR C then C– Br OR C – C	C–C1340 C–Br 280 Br 280 C–I 240	wild	39	
(0)	ethanolic (instead of aque					
(e)		coas		A SPORT OF THE PERSON OF THE P		

$125.\ 9701_w17_ms_21\ Q:\ 3$

(a)	reaction	reagent(s) and conditions	reaction type(s)		6		
	1	aqueous / aq / dilute NaOH / KOH OR water	substitution OR hydrolysis				
	2	alcoholic / ethanolic NaOH / KOH	elimination				
	3	NaCN / KCN in ethanol / alcohol	substitution				
	4	aqueous /dilute H₂SO₄ / H⁺(aq)	hydrolysis OR substitution OR addition-elimination				
	5	acidified / H^{+} (with) $K_2Cr_2O_7$ / $Cr_2O_7^{2-}$ (and distil) NOT reflux	oxidation OR elimination				
	6	acidified / H † K $_2$ C $_{r2}$ O $_7$ / Cr $_2$ O $_7$ $^{2-}$ Fehling's / Tollens' / Benedict's (reagent)	oxidation				
(b)		r on O of ^{OH} AND curly arrow from lone pair		200	2		
(c)(i)	(different mo	olecules) with same molecular formula / same	numbers of atoms of (each ty	pe) of element	1		
	different stru	uctural formulae / displayed formulae		4	1		
	chain / skele	etal	•		2		
	functional group						
	position(al) / regioisomerism						
	two types co	orrect = 1 mark, all three correct = 2 marks					
(c)(ii)	S_N / nucleophilic substitution						
	reduced) OR	tertiary halogenoalkane) forms a stable (carl			1		
	OR (because) th	nere are (3 /more) alkyl / methyl groups AND nere is only one / fewer alkyl / methyl group(s) nane) AND limited (+) I / (less) inductive effec	(compared to reaction with 2-		1		
(d)(i)	(different mo	plecules) with the same (molecular and) struc	ctural formula /		1		
	with differen	t arrangements of <u>atoms</u> in space / spatial ar	rangement of <u>atoms</u>		1		
(d)(ii)	mirror image	es are super(im)posable / no chiral carbon / no	o chiral centre / it is achiral		1		
	OR A	ouble bond has identical groups / H (atoms) (f double bond has identical groups / 2 H (aton			1		
(d)(iii)	X = 2-chloro		is) (allacried)		1		
(4)()	Y = 1-chloro				1		
(d)(iv)	optical (ison				1		
(d)(v)	, ,	able 3D structure of 2-chlorobutane			1		
· / · · /		cal isomer EITHER drawn as a mirror image	of the first		1		
	OR .	and pattern is shown but two of the groups sw					
	CH ₂ (CH ₃ CH ₂ CH ₃					
	H₃C C	H H Cl CH₃					

126. 9701_w17_ms_22 Q: 4

(a)		concentrated H ₂ SO ₄ /H ₃ PO ₄ AND NaBr		5
	1	OR (red) P / Br ₂ OR HBr	substitution	
	2	aqueous / dilute NaOH / KOH	hydrolysis OR substitution	
	3	concentrated H ₂ SO ₄ / H ₃ PO ₄ OR Al ₂ O ₃ / P ₄ O ₁₀ / pumice / porous pot / SiO ₂	dehydration	
	4	(ethanolic) HBr	addition	
		4 marks for column 1 (one per row)	1 mark for col 2	
(b)	M2 (Br ^O Structure of the		3
(-)(i)	M3 curly arrow from lone pair on ¹ OH to C⁺ of carbocation			
(c)(i)	(different molecules) same molecular formula / same numbers of atoms of each (type of) element different structural formulae / displayed formulae			1
	chai func posi	in / skeletal ctional group tion(al) / regioisomerism types correct = 1 mark, all three correct = 2	70 ,	2
(c)(ii)	S _N /	nucleophilic substitution		1
	no (stable) (carbo)cation / intermediate is formed	A 10	1
		one alkyl group / fewer alkyl / methyl groups ating (effect)	(compared to reaction 2) AND limited (+)I / inductive effect / less electron	1
(d)(i)		or images are super(im)posable not chiral / no chirality / no chiral/asymmetric	carbon/centre / achiral	1
	one	or both C/end of double bond has identical	groups / 2 methyl groups / 2 H (atoms)	1
(d)(ii)	addi	ition	•	1
	H mar	H ₃ C H 		2
(d)(iii)	not/i	non- biodegradable / harmful combustion pro	oducts	1
(e)	2-br	omo-2-methylpropane		1
	1-br	omo-2-methylpropane		1

 $127.\ 9701_w16_ms_22\ Q{:}\ 4$

(a)(i)	2-bromobutane	1
(a)(ii)	e.g. of mirror images CH ₃ CH ₃ CH ₃ H ₃ CCH ₂ Br CH ₂ CH ₃	1+1
	e.g. of swapped groups CH ₃	
(a)(iii)	CH ₃ CH ₂ CH ₂ CH ₂ Br (CH ₃) ₂ CHCH ₂ Br (CH ₃) ₃ CBr	1 1 1
(b)(i)	3-bromo-3-ethylpentane	1
(b)(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1
(b)(iii)	S _N 1/nucleophilic substitution	1
(c)(i)	Sodium/potassium hydroxide	1
	Ethanol/alcohol AND heat	1
(c)(ii)	elimination	1
(c)(iii)		1
		1
		1
	Total:	17

 $128.\ 9701_s21_ms_22\ Q:\ 3$

Question	Answer	Mark
(a)	change in amount of substance with time	1
(b)(i)	label area under the original curve to the right of E _a .	1
(b)(ii)	M1 curve starts at the origin but peak lies to the right of original. M2 peak at higher temperature is lower than the original AND graph crosses the original once only – beyond the peak of original	1
(b)(iii)	no change / none	1

Question	Answer	Mark
(c)(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	M2 correct intermediate	1
	M3 arrow from lone pair on O of OH⁻/⁻OH to central C of their intermediate shown in M2 OR arrow from lone pair on O of OH⁻/⁻OH to central C of 2-bromo 2-methylpropane if S _N 2 mechanism shown	1
(c)(ii)	nucleophilic substitution	1
(d)	M1 more time (because the rate is lower)	1
	M2 C-Cl (bond) is stronger (than C-Br)	1

 $129.\ 9701_s21_ms_23\ Q{:}\ 5$

Question	Answer	Marks
(a)	M1all 3 COOH form COONa / CO ₂ Na / COO ⁻ Na ⁺	1
	M2 the OH group forms CONa / CO⁻Na⁺	1
	M3 equation describes H_2 as a product and equation balanced correctly HO HO HO HO HO HO HO HO HO H	1
(b)(i)	M1 skeletal formula of 2-hydroxypropanoic acid / similar chiral isomer that meet the criteria in table OH OH	,
	M2 chiral carbon marked with *	1
(b)(ii)	M1 citric acid has a tertiary alconol group so is not oxidised	1
	M2 X has a secondary alcohol group which is oxidised (to a ketone)	1
(c)	M1 chiral centre / non superimposable mirror image / has a C attached to 4 different groups	1
	M2 C=C where each C is attached to (two) different groups	1
(d)	(molecules / isomers with) the same molecular formula / same number of atoms of each element AND different structural formulae / different structures	1
	Palpacain	

130. 9701_w19_ms_22 Q: 3

(a)(i)	green gas fades OR white solid / white powder / white smoke / white fumes	1
(a)(ii)	hydrolysis	1
(a)(iii)	□ P goes from 0 to (+)5/(+)V □ P is oxidised □ N goes from (+)5/(+)V to (+)4/(+)IV □ N is reduced Award one mark for two correct bullet points, award two marks for all four correct.	2
(b)(i)	accepts a proton / H+ OR donates a (lone) pair of e-	1
(b)(ii)	3-D shape AND bond angle H H AND 109 1/2 (*)	1
(b)(iii)	fertilisers	1
(c)(i)	$C_2H_5OH + PCI_5 \rightarrow C_2H_5CI + POCI_3 + HCI$	1
(c)(ii)	substitution	1
(c)(iii)	EITHER M1: HI / I ⁻ is a strong(er) reducing agent (than HC <i>l</i> / C <i>l</i> ⁻) M2: HI / I ⁻ is oxidised (to iodine but the chloride is not) OR	2
	M1: H_2SO_4 is a (strong enough) oxidising agent (to react with HI/I^- here) M2: HI/I^- forms iodine	
	OR	
	M1: phosphoric acid is a weak / not an oxidising agent M2: (so) does not react with iodide (where M2 is dependent on M1 here)	
(c)(iv)	M1: C_2H_5I reacts fastest AND C_2H_5Cl reacts slowest OR $C_2H_5Cl < C_2H_5Br < C_2H_5I$	2
	M2: C—I bond is the weak(est) AND C—C! bond strong(est)	

131. 9701_s18_ms_21 Q: 4

(a)(ii) butan-2-ol			
(b) CH ₃ CH ₂ CH ₂ CH ₂ OH (CH ₃) ₂ CHCH ₂ OH (CH ₃) ₃ CHCH ₂ OH (CH ₃) ₄ CHCH ₂ O	(a)(i)	lodoform / triiodomethane	1
(CH ₃) ₂ CHCH ₂ OH (c)(i) oxidation / redox 1 (c)(ii) acidified / H ⁺ 1 AND potassium / sodium dichromate((VI)) or formulae (c)(iii) In any order: but-1-ene 1 but-2-ene 1 cis / Z- AND trans / E- (d)(i) C-C-C-H → H ₃ C-C-C-H → H ₃ C-C-H → Propene curly arrow from C=C to H curly arrow from C=C to H curred dipole on HBr and curly arrow from bond of HBr to Br tertiary intermediate cation 1 Br with curly arrow from lone pair 1 (d)(ii) (carbo)cation / tertiary intermediate (more) stable (than primary) 1	(a)(ii)	butan-2-ol	1
$ \begin{array}{c} \text{(c)(ii)} \\ \text{AND} \\ \text{potassium/sodium dichromate((VI)) or formulae} \\ \\ \text{(c)(iii)} \\ \text{In any order:} \\ \text{but-1-ene} \\ \text{but-2-ene} \\ \text{cis I Z- AND trans / E-} \\ \\ \text{(d)(i)} \\ \\ \text{H}_{3}\text{C-} \begin{array}{c} \text{CH}_{3} \text{ H} \\ \text{H}_{3}\text{C-} \\ \text{C-} \\ \text{C-} \\ \text{H} \\ \text{Br} \\ \text{A} \\ \end{array} \begin{array}{c} \text{CH}_{3} \text{ H} \\ \text{H}_{3}\text{C-} \\ \text{C-} \\ \text{C-} \\ \text{C-} \\ \text{H} \\ \text{Br} \\ \end{array} \begin{array}{c} \text{CH}_{3} \text{ H} \\ \text{Propene} \\ \text{H}_{3}\text{C-} \\ \text{C-} $	(b)	(CH ₃) ₃ COH	2
AND potassium / sodium dichromate((V1)) or formulae (c)(iii) In any order: but-1-ene but-2-ene cis / Z- AND trans / E- (d)(i) H ₃ C C C H H ₃ C H ₃ C H ₄ C	(c)(i)	oxidation / redox	1
potassium / sodium dichromate((VI)) or formulae (c)(iii) In any order: but-1-ene but-2-ene cis / Z- AND trans / E- (d)(i) H ₃ C C C H H H ₃ C C H H Propene curly arrow from C=C to H curly arrow from C=C to H tertiary intermediate cation Br with curly arrow from lone pair (d)(ii) (d)(iii) potassium / sodium dichromate((VI)) or formulae 1 1 1 1 1 1 1 1 1 1 1 1 1	(c)(ii)	acidified / H ⁺	1
(c)(iii) In any order: but-1-ene 1 but-2-ene 1 (d)(i) CH ₃ H H ₃ C CH ₃ H H ₄ C CH ₄ C CH ₃ H H ₄ C CH ₄ C C		AND	
but-1-ene but-2-ene cis / Z- AND trans / E- (d)(i) H ₃ C - C - H		potassium / sodium dichromate((VI)) or formulae	
but-2-ene $cis/Z- AND \ trans/E-$ $(d)(i)$ $H_3C = C + H_3 + H_3C + H_3$	(c)(iii)	In any order:	
cis / Z- AND trans / E- (d)(i) H ₃ C CH ₃ H		but-1-ene	1
$(d)(i) \begin{tabular}{c c c c c c c c c c c c c c c c c c c $		but-2-ene	1
Land the state of		cis / Z- AND trans / E-	1
curly arrow from C=C to H correct dipole on HBr and curly arrow from bond of HBr to Br tertiary intermediate cation Br with curly arrow from lone pair (d)(ii) (carbo)cation / tertiary intermediate (more) stable (than primary) 1	(d)(i)	$H_3C-C=C-H$ $H_3C-C-C-H$ H_3	
tertiary intermediate cation Br with curly arrow from lone pair (d)(ii) (carbo)cation / tertiary intermediate (more) stable (than primary) 1		curly arrow from C=C to H	1
Br with curly arrow from lone pair (d)(ii) (carbo)cation / tertiary intermediate (more) stable (than primary) 1		correct dipole on HBr and curly arrow from bond of HBr to Br	1
(d)(ii) (carbo)cation / tertiary ion / tertiary intermediate (more) stable (than primary)		tertiary intermediate cation	1
		Br with curly arrow from lone pair	1
due to electron-releasing / (positive) inductive effect of more alkyl / methyl groups	(d)(ii)	(carbo)cation / tertiary ion / tertiary intermediate (more) stable (than primary)	1
		due to electron-releasing / (positive) inductive effect of more alkyl / methyl groups	1

2. 9701_ ₋ -	w15_ms_21 Q: 4	
(a) (i)	$\begin{array}{c} CH_3CH_2OH + HC \underline{l} \to CH_3CH_2C l + H_2O \\ or \\ CH_3CH_2OH + PC \underline{l_5} \to CH_3CH_2C l + HC l + POC \underline{l_3} \\ or \\ CH_3CH_2OH + SOC \underline{l_2} \to CH_3CH_2C l + HC l + SO_2 \end{array}$	[1+1
(ii)	NaOH/KOH warm/heat/reflux AND aqueous	[1] [1]
(b) (i)	CH ₂ =CH ₂ /ethane/C ₂ H ₄ /CH ₂ CH ₂	[1]
(ii)	White ppt/solid/suspension	[1]
(iii)	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$	[1]
(c) (i)	CH ₃ CHO/ethanal	[1]
(ii)	CH₃CH₂OH higher bpt than CH₃CHO ora	[1]
	due to hydrogen bonding in ethanol/stronger IMFs	[1]
	prevents further oxidation owtte	[1]

133. 9701_s21_ms_23 Q: 4

Question		Answer						
(a)(i)	1,3-dich	1,3-dichloropropan(-2-)one						1
(a)(ii)	carbony	carbonyl / ketone						
(a)(iii)	NaBH₄ (OR LiA	lH₄					1
(b)	reagent observation with Q observation with R							4
	precipitate / solid / crystals precip			M2 red / oran precipitate / s	ge / yellow AND olid / crystals			
			M4 fizz / effer	vescence				
(c)	step	reage	ent and conditions	type of rxr	1			5
	1	M1 H	ICN and (trace) KCN / NaCN	M3 Additio	on			
	2	dilute	sulfuric acid	Hydrolys	s			
	3	M2 K	CN/NaCN in ethanol / alcohol	M4 Substi	tution		0.	
	4	dilute	sulfuric acid	Hydrolys	is			
	M5 type	of read	ction for step 2 AND step 4	'			9	

 $134.\ 9701_m21_ms_22\ Q{:}\ 4$

Question	Answer	Marks
(a)	M1: x = 108–110° M2: y = 118–122°	2
(b)	M1: red / orange / yellow ppt / solid M2: silver mirror OR silver / grey / black / brown ppt / solid	2
(c)(i)	oxidising agent	1
(c)(ii)	M1: (excess dichromate and) heat under reflux M2: to allow full oxidation (of alcohol and aldehyde groups)	2
(d)(i)	$CH_2OHCHO + 2[H] \rightarrow (CH_2OH)_2$	1
(d)(ii)	NaBH ₄ /LiA <i>I</i> H ₄	1
(d)(iii)	ethene	1

 $135.\ 9701_s21_ms_22\ Q{:}\ 4$

Question			Answer	Mark
(a)(i)		structural formula	name	4
	A	CH ₃ CH ₂ CH=CH ₂	but-1-ene OR 1-butene	
	В	H ₃ C CH ₃	cis / Z but-2-ene OR cis / Z 2-butene	
	С	H ₃ C H	trans / E but-2-ene OR trans / E 2-butene	
	D	CH ₂ =C(CH ₃) ₂	(2) methyl prop(-1-)ene	
	M2 corr M3 iden	ect identification of but- ect identification of but- tification of cis / trans (2 ect name of D		
(a)(ii)	(molecul space	es with the) same structur	ral formula (and same molecular formula) with different arrangement of atoms / groups in	1
(b)(i)	Α			1

Question	Answer	Mark
(b)(ii)	M1 skeletal formula only	1
	M2 explanation in terms of increased / greater stability of intermediate / carbocation intermediate / (secondary) carbocation / CH ₃ C ⁺ (H)(CH ₂ CH ₃) is (more) stable	1
	M3 reason for increased stability of intermediate in terms of greater number of alkyl groups showing largest inductive (electron releasing) effect greater (positive) inductive effect due to two alkyl groups OR greater electron donation of two alkyl groups	1
(c)	dehydrating agent / cause dehydration	1
(d)(i)	oxidation	1
(d)(ii)	functional group present in Z aldehyde ketone carboxylic acid	1

 $136.\ 9701_w21_ms_21\ Q{:}\ 3$

Question	Answer	Marks
(a)(i)	M1 simple molecular	3
	M2 giant molecular	
	M3 weak IMFs (overcome) in P ₄ AND strong (covalent) bonds (broken) in P	
(a)(ii)	enthalpy P ₄ (red / (4)P) progress of reaction	1
(b)(i)	(+)5/V	1
(b)(ii)	PC <i>l</i> ₅ + 4H ₂ O → H ₃ PO ₄ + 5HC <i>l</i>	2
	$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$	
(c)(i)	C ₁₈ H ₁₅ P	1
(c)(ii)	stage 1 = reduction	2
	stage 2 = substitution	

Question	Answer					Marks
(c)(iii)		G = C ₂ H ₅ CH ₂ OH		H = C ₂ H ₅ CH=CHC ₂ H ₅		2
(d)		CH ₃ CH ₂ CO ₂ H	2	CH₃COCH₃		2
	***	balb				

 $137.\ 9701_w21_ms_22\ Q:\ 3$

Question	Answer	Marks
(a)	(2,3-)dimethylbut-2-ene	1
(b)	OR OR OR	1
(c)(i)	H ₃ C, CH ₃ CH ₃	1
(c)(ii)	sp^2	1
(d)(i)	cold dilute acidified potassium manganate(VII)	1
(d)(ii)	M1 (2,4-DNPH will produce a) red / orange / yellow precipitate M2 V has a carbonyl group	2
(d)(iii)	M1 C—O in range 1040–1300 (cm ⁻¹) M2 C=O in range 1670–1740 (cm ⁻¹)	2
(e)(i)	yellow precipitate	1
(e)(ii)	lodine / I ₂	1
(e)(iii)	$C_6H_{12}O + 2[H] \rightarrow C_6H_{14}O$	1

Question	Answer	Marks
(e)(iv)	Draw two optical isomers of X. eg C(CH ₃) ₃ C(CH ₃) ₃ C(CH ₃) ₃ H·····C H ₃ OH OR CH ₃ M1 One correct 3-dimensional representation of X M2 3-d structure which represents the enantiomer of their X	1
(e)(v)	heat AND concentrated H ₂ SO ₄ / concentrated H ₃ PO ₄ / concentrated sulfuric [(VI)] acid / concentrated phosphoric[(V)] acid	1
(e)(vi)	H C(CH ₃) ₃ H C(CH ₃) ₃ 	1
(e)(vii)	high activation energy	1

138. 9701_m20_ms_22 Q: 3

(a)(i)	$\label{eq:M1} \textbf{M1} \ \text{acidified} \ / \ \text{H}^+ \ \ \text{Cr}_2\text{O}_7^{2-} / \ (\text{potassium} \ / \ \text{sodium}) \ \text{dichromate}$ $\ \text{OR} \ \text{manganate} \ (\text{VII}) \ / \ \text{MnO}_4^- / \ \text{KMnO}_4$	2
	M2 (heat under) reflux	
(a)(ii)	nucleophilic addition	
(a)(iii)	yellow/orange/red ppt/solid	
(a)(iv)	it does not have four different (groups of) atoms attached to (central) carbon OR it does not have a chiral carbon / centre OR it has two identical / COOH groups attached to (central) carbon OR mirror image is super(im)posable	
(a)(v)	M1 hydrolysis M2 esterification / condensation	
(b)(i)	M1 no. of mol $O_2 = \frac{1.00 \times 10^5 \times 1.06 \times 10^{-3}}{(8.31 \times 850)}$	
	M2 no. of mol of nitroglycerine = $4 \times 0.0150 = 0.0600$ (mol)	
	M3 mass of nitroglycerine = 0.0600 × 227 = 13.6(2) (g)	
(b)(ii)	$1.06 \times 29 = 30.7(4) \text{dm}^3$	
(c)(i)	$C_5H_6O_2$	
(c)(ii)	H (CH ₂) ₂ COOH	
	ў ў н н	
(c)(iii)	M1 curly arrow from C=C double bond to Br M2 correct dipole in Br ₂ AND curly arrow from Br—Br to Br ⁵ - M3 correct intermediate AND curly arrow from lone pair on Br ⁻ to C ⁺ M4 correct product	
(d)(i)	M1 C ₆ H ₁₃ Br HOOC M2 (two) different groups on each C atom in the C=C / end of the C=C double bond M3 no / restricted rotation about C=C	
(d)(ii)	H ₂ / hydrogen	
(d)(iii)	M1 / M2 absorptions seen in both spectra (any two): (same) both show an absorption at 1680–1730 (cm ⁻¹) because of C=O (same) both show an absorption at 1040–1300 (cm ⁻¹) because of C=O (same) both show an absorption at 2500–3000 (cm ⁻¹) because of RCO ₂ -H / O-H in RCO ₂ H / carboxyl(ic acid)	
	M3 absorption only seen in spectrum of T: (different) T shows an absorption at 1500–1680 (cm ⁻¹) because of C=C (different) T shows an absorption at 3000–3100 (cm ⁻¹) because of (C=)C–H	

 $139.\ 9701_s20_ms_21\ Q{:}\ 5$

(a)(i)	CI	1
(a)(ii)	HCl AND H₂O	1
(a)(iii)	M1 CO ₃ ²⁻ M2 propanoic acid – effervesce. (Propan-1-ol – no reaction)	2
(b)(i)	ultraviolet light / uv	1
(b)(ii)	homolytic fission (of chlorine (gas) / C½)	1
(c)(i)	carbonyl / aldehyde / ketone	1
(c)(ii)	tertiary halogenoalkane	1
(d)(i)	Two structures representing the intermediate M1 C ₂ H ₅ C ⁺ HCH ₃ M2 CH ₃ CH ₂ CC ⁺ H ₂	2
(d)(ii)	Identify the most stable intermediate M1 C ₂ H ₅ C+HCH ₃ explanation M2 (more / 2 alkyl groups attached so) it has the greater inductive / electron donating effect	2
	M2 (more / 2 alkyl groups attached so) it has the greater inductive / electron donating effect	

140. 9701_w20_ms_22 Q: 3

(a)(i)	$P_4 + 10Cl_2 \rightarrow 4PCl_5$	1
(a)(ii)	simple / molecular AND covalent	1
(b)(i)	steamy / misty fumes	1
(b)(ii)	$PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$	1
(b)(iii)	0 to 4	1
(c)(i)	LiA/IH ₄ OR lithium tetrahydridoaluminate((III))	1
(c)(ii)	M1: molecule with a non super-(im)posable mirror image	2
	M2:	
(c)(iii)	\downarrow Cl Cl	1
(d)(i)	M1: (trigonal) pyramidal	2
	M2: 107	
(d)(ii)	M1: proton / H ⁺ donor	2
	M2: partially dissociates (in solution)	
(d)(iii)	method 1 M1: show the number of mol gas produced from 0.241 g NCl ₃ [M _r (NCl ₃) = 120.5 1 mol NCl ₃ produces 2 mol gas]	4
	n = 2 × 0.241 / 120.5 OR n = 0.0040 (mol gas produced.)	
	M2: correct conversion of T to Kelvin, V to m³ and correct value of R	
	M3: use of equation $P = nRT/V$ with M2 values for n , R , T and V to find pressure of mol gas produced	
	increase in $p = nRT/V = \frac{0.0040 \times 8.31 \times 293}{250 \times 10^{-6}}$	
	= 3.90 × 10 ⁴	
	M4: = $1.00 \times 10^5 + M3$ (Pa) total pressure = $1.00 \times 10^5 + 3.90 \times 10^4$ = 1.39×10^5 (Pa)	
	M2 : conversion of T to Kelvin, V to m^3 and correct value of R in all PV/RT equations used M3 : use of equation $PV/RT = n$ for both calculations or a combined equation with M2 values for R , T and V to find partial pressure for each of the gases $ppCt_b = 29217.96$ AND $ppN_b = 9739.32$	
	M4: Use P_{total} = pp unreacted gas + ppC I_2 + ppN $_2$ 1 × 10 ⁵ + 2.92 × 10 ⁴ + 9.74 × 10 ³ = 138 940	

 $141.\ 9701_s19_ms_21\ Q:\ 4$

	op-1-ene			
(b) a = 109(.)°			
b = 120°				
c)(i) C ₃ H ₇ C <i>1</i> O				
c)(ii) oxidation				
c)(iii)			alcohol group present in Z	
		primary	✓	
		secondary	✓	
		tertiary		
d)(i) A and B				
d)(ii)		Compound(s)	Observation	
	Reaction with Tollens' reagent	B✓	silver mirror OR grey / black / brown / silver preci	oitate ✓
		Compound(s)	Observation	
	Reaction with alkaline aq. iodin	ne A ✓ and C ✓	(Pale) yellow precipitate /solid ✓	
		Compound(s)	Observation	
	Reaction with sodium metal	C ✓ and D✓	Effervescence / sodium/solid disapp	ears ✓
	Ro	C	Sill	

 $142.\ 9701_w19_ms_21\ Q:\ 4$

(a)(i) (2,2–)dimethylpropanal (a)(ii) sp² (b)(i) acidified potassium dichromate[(VI)] AND heat under reflux (b)(ii) M1: A has H-bonding (between molecules) M2: B only has dipole–dipole / VdW forces (between molecules) M3: H-bonding is stronger / requires more energy to overcome (b)(iii) (CH ₃) ₃ CCHO + 2[H] → (CH ₃) ₃ CCH ₂ OH (b)(iv) HO M1: /CH ₃ CH(OH)CH ₃ M2: H ₂ SO ₄ /sulfuric acid (c)(ii) • orange / red / yellow precipitate • orange / red / yellow precipitate (c)(iii) Aldehyde (c)(iiii) has a carbon / atom attached / bonded to four different atoms / groups / groups of atoms / chains (c)(iv) CHO CHO H ₃ CCPC ₂ H ₅ H ₅ C ₂ CCV/H ₅ CH ₃ M1: Correct 3D representation	1 1 2 1 1 2
(b)(ii) acidified potassium dichromate[(VI)] AND heat under reflux (b)(ii) M1: A has H-bonding (between molecules) M2: B only has dipole-dipole / VdW forces (between molecules) M3: H-bonding is stronger / requires more energy to overcome (b)(iii) (CH ₃) ₃ CCHO + 2[H] → (CH ₃) ₃ CCH ₂ OH (b)(iv) HO	1 1 1 1
(b)(ii) M1: A has H-bonding (between molecules) M2: B only has dipole–dipole / VdW forces (between molecules) M3: H-bonding is stronger / requires more energy to overcome (b)(iii) (CH ₃) ₃ CCHO + 2[H] → (CH ₃) ₃ CCH ₂ OH (b)(iv) HO M1: /CH ₃ CH(OH)CH ₃ M2: H ₂ SO ₄ / sulfuric acid (c)(i) • orange / red / yellow precipitate • orange / red / yellow precipitate (c)(ii) Aldehyde (c)(iii) has a carbon / atom attached / bonded to four different atoms / groups / groups of atoms / chains	1 1 1 1
M2: B only has dipole–dipole / VdW forces (between molecules) M3: H-bonding is stronger / requires more energy to overcome (b)(iii) (CH ₃) ₃ CCHO + 2[H] → (CH ₃) ₃ CCH ₂ OH (b)(iv) HO M1: /CH ₃ CH(OH)CH ₃ M2: H ₂ SO ₄ / sulfuric acid (c)(i) • orange / red / yellow precipitate • orange / red / yellow precipitate (c)(ii) Aldehyde (c)(iii) has a carbon / atom attached / bonded to four different atoms / groups / groups of atoms / chains (c)(iv) CHO CHO CHO CHO CHO CHO CHO CHO	1 1 1 1
M3: H-bonding is stronger / requires more energy to overcome (b)(iii) (CH ₃) ₃ CCHO + 2[H] → (CH ₃) ₃ CCH ₂ OH (b)(iv) HO M1: /CH ₃ CH(OH)CH ₃ M2: H ₂ SO ₄ / sulfuric acid (c)(i) • orange / red / yellow precipitate • orange / red / yellow precipitate (c)(ii) Aldehyde (c)(iii) has a carbon / atom attached / bonded to four different atoms / groups / groups of atoms / chains (c)(iv) CHO CHO CHO CHO CHO CHO CHO CHO	1 1 1
(b)(iii) (CH ₃) ₃ CCHO + 2[H] → (CH ₃) ₃ CCH ₂ OH (b)(iv) HO M1: /CH ₃ CH(OH)CH ₃ M2: H ₂ SO ₄ /sulfuric acid (c)(i) • orange / red / yellow precipitate • orange / red / yellow precipitate (c)(ii) Aldehyde (c)(iii) has a carbon / atom attached / bonded to four different atoms / groups / groups of atoms / chains (c)(iv) CHO CHO H ₃ CCHO CHO CHO CHO CHO CHO CHO CHO	1 1 1
(b)(iv) M1: /CH ₃ CH(OH)CH ₃ M2: H ₂ SO ₄ / sulfuric acid (c)(i) • orange / red / yellow precipitate • orange / red / yellow precipitate (c)(ii) Aldehyde (c)(iii) has a carbon / atom attached / bonded to four different atoms / groups / groups of atoms / chains (c)(iv) CHO CHO H ₃ CCC ₂ H ₅ H ₅ CC ₂ CCCCH ₃ H CH ₃ CCCCCH ₅ H ₅ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1 1 1
M1: /CH ₃ CH(OH)CH ₃ M2: H ₂ SO ₄ / sulfuric acid (c)(i) • orange / red / yellow precipitate • orange / red / yellow precipitate (c)(ii) Aldehyde (c)(iii) has a carbon / atom attached / bonded to four different atoms / groups / groups of atoms / chains (c)(iv) CHO CHO H ₃ CC C ₂ H ₅ H ₅ C ₂ CCCCH ₃ H ₅ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₃ CH ₄ CH ₃ CH ₅	1 1 1
M2: H ₂ SO ₄ / sulfuric acid (c)(i) orange / red / yellow precipitate orange / red / yellow precipitate (c)(ii) Aldehyde (c)(iii) has a carbon / atom attached / bonded to four different atoms / groups / groups of atoms / chains (c)(iv) CHO CHO H ₃ C C ₂ H ₅ H ₅ C ₂ C ₁ H ₁ CH ₃	1
(c)(i) orange / red / yellow precipitate orange / red / yellow precipitate (c)(ii) Aldehyde (c)(iii) has a carbon / atom attached / bonded to four different atoms / groups / groups of atoms / chains (c)(iv) CHO CHO H ₃ C CHO CHO CHO CHO CHO CHO CHO C	1
orange / red / yellow precipitate (c)(ii) Aldehyde (c)(iii) has a carbon / atom attached / bonded to four different atoms / groups of atoms / chains (c)(iv) CHO CHO H ₃ C C ₂ H ₅ H ₅ C ₂ C H ₅ CH ₃	1
(c)(iii) has a carbon / atom attached / bonded to four different atoms / groups of atoms / chains (c)(iv) CHO CHO H ₃ C C ₂ H ₅ H ₅ C ₂ C ₄ C ₄ C ₄ H CH ₃ C	1
(c)(iv) CHO CHO	
H_3 C C_2 H ₅ H_5 C C_2 C C_4 H C H ₃	2
H ₃ C CH ₃	
H ₃ C CH ₃	
M1: Correct 3D representation	
M2: Correct 3D representation of drawn enantiomer	
(c)(v)	1
principal absorptions in the infra-red spectrum bond responsible	
3200–3600 cm ⁻¹ RO-H/O-H	
1630 cm ⁻¹ C=C	
1050 cm ⁻¹ C—O	
(c)(vi) \ /	3
M1: skeletal alkene group AND C5 structure	
M2: one alcohol group	
M3: branched chain AND capable of geometrical isomerism	
(c)(vii) M1: Correct structure of X and correct dipole on C=O	3
M2: curly arrow from C=O bond to O AND intermediate with CN attached and –ve charge on the O	
M3: curly arrow from lone pair on CN ⁻ to C(=O) in X	
AND curly arrow from lone pair in the intermediate to H ⁺	
δ •	
o ₀ ;	
H_5C_2 C_2H_5	
$ \begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & &$	
(c)(viii) catalyst	1

 $143.\ 9701_m18_ms_22\ Q:\ 3$

(a)(i)	$Ca + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2$	
(a)(ii)	CaSO ₄ does not react (with sulfuric acid)	
()()	coating / crust / protective layer / CaSO ₄ prevents reaction (of sulfuric acid) with calcium	
(b)(i)	dot-and-cross diagram AND 2+	
(b)(ii)	o c c o o o o o o o o o o o o o o o o o	
(c)(i)	bleach	
(c)(ii)	$Cl_2 + 2OH^- \rightarrow Cl^- + ClO^- + H_2O$	
(c)(iii)	-1 AND (+)5	
(c)(iv)	gains AND loses electrons	
(d)(i)	carbon dioxide AND water	
(d)(ii)	reaction reagent(s) and condition(s)	
	1 HCN / NaCN /	
	3 □ K ₂ Cr ₂ O ₇ □ H ₂ SO ₄ / acid / H ⁺ □ (heat under) reflux	
(d)(iii)	hydrolysis	
(d)(iv)	reducing agent	
(d)(v)	has a carbon / C / atom attached to four different groups / atoms / chains OR has no plane / line of symmetry / has non-superimposable images	

 $144.\ 9701_s18_ms_22\ Q:\ 4$

(a)(i)	iodoform / tri-iodomethane	1
(a)(ii)	butanone	1
(b)	CH ₃ CH ₂ CHO	1
(5)		'
	(CH ₃) ₂ CHCHO	1
(c)(i)	reduction	1
(c)(ii)	NaBH ₄ / sodium borohydride	1
	OR	
	LiA <i>ī</i> H ₄ / lithium aluminium hydride	
(d)(i)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	lone pair on C of CN⁻ and curly arrow to C of C=O	1
	correct dipole on C=O and curly arrow from = to O	1
	correct intermediate anion	1
	curly arrow from lone pair on O to H ⁺	1
(d)(ii)	optical	1
(d)(iii)	(X has a) chiral centre / asymmetric carbon atom OR (X has a) C atom attached to four different groups / atoms / chains	1
	non-super(im)posable mirror images	1
(e)(i)	M1 is for the process of taking the % of each element and dividing by its relative atomic mass.	2
	C A O	
	51.3 9.40 12.0 27.3	
	12 1 14 16	
	OR	
	4.28 9.40 0.857 1.71	
	M2 is for dividing the smallest $\%/A_r$ into each of the remaining values to produce the correct ratio.	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	OR	
	4.9942 : 10.9685 : 1 : 1.9953	
(e)(ii)	$C_5H_{11}NO_2$ AND because the EFM = RFM	1

 $145.\ 9701_w18_ms_22\ Q{:}\ 4$

(a)(i)	H O H H O H H O H O H O H O H O H O H O	1
(a)(ii)	dehydration	1
(a)(iii)	OH $H_3C - \stackrel{ }{C} - H + [O] \rightarrow \stackrel{ }{I} + H_2O$ CO_2H CO_2H	1
(a)(iv)	Na ₂ Cr ₂ O ₇ / K ₂ Cr ₂ O ₇ AND (dilute) H ₂ SO ₄ / H ⁺ (aq) / acidified	1
(b)(i)	(Molecules that are) non-super(im)posable mirror images	1
(b)(ii)	OH OH H ₃ C CH ₃ CH ₃ M1 correct 3-d drawing of one isomer of Q [1] M2 correct pair of 3-d structures of the optical isomers of Q [1]	2
(c)	H CO ₂ Na	3
(d)(i)	M1 I experiences a (greater positive) inductive effect due to more alkyl groups OR I contains more electron donating alkyl groups (than II) [1] M2 which stabilises the charge / reduces the charge (on the ion/intermediate) OR spreads the charge across the ion/molecule / intermediate [1]	2
(d)(ii)	M1 curly arrow from double bond to H of H—Br [1] M2 curly arrow from H—Br bond to Br AND correct dipole on H—Br [1] M3 curly arrow from lone pair on Br to C ⁺ [1]	3
(d)(iii)	nucleophilic substitution	1
(e)(i)	$CH_3COCO_2H + 6[H] \rightarrow CH_3CHOHCH_2OH + H_2O$ M1 correct organic product $CH_3CHOHCH_2OH$ [1] M2 [H] present as reactant with H_2O as product and balancing [1]	2
(e)(ii)	1s ² 2s ² 2p ⁶ (3s ⁰)	1
(e)(iii)	lons/elements have more shells / energy levels (as the group is descended)	1

 $146.\ 9701_s17_ms_21\ Q:\ 4$

(a)(i)	(molecules / isomers with) the same molecular formula / same number of atoms of each element	1
	different structural / displayed formulae / arrangement of bonds	1
(a)(ii)	sp ² overlap of (2)s with two (2)p (atomic) orbitals	1
	sp³ overlap of (2)s with all three (2)p (atomic) orbitals	1
(a)(iii)	sp ² = 116° – 124°	1
	sp ³ = 106° – 112°	1
(b)(i)	H O H H H H H H H H H H H H H H H H H H	1
(b)(ii)	(electrophilic) addition	1
	bromine decolourises / turns colourless / fades (from orange / brown)	1
(b)(iii)	HOCH ₂ CHBrCH ₂ Br OR HOCC C Br	1
(b)(iv)	CO ₂ / carbon dioxide	1
(c)(i)	P = propanal	1
	Q = propanone	1
(c)(ii)	$\begin{array}{c c} & I & I \\ H-C-I & I \\ tr(i) iodomethane / CHI_3 / & I / I \end{array}$	1
(d)(i)	(molecules / isomers with) the same (molecular and) structural formula	1
	Any two of: chiral centre / C attached to four different groups / atoms non-super(im)posable mirror images different spatial / 3D arrangement of atoms (owtte) different rotation of plane-polarised light	1
(d)(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	curly arrow from lone pair on :C≣N to C ⁽⁸⁺⁾	1
	correct dipole on carbonyl ⁵⁺C=O⁵− AND curly arrow from bond to O(⁵−)	1
	correct intermediate, including C−O⁻ AND curly arrow from lone pair to H⁺	1
	Total:	19

 $147.\ 9701_m16_ms_22\ Q:\ 3$

(a) (i)	three bonding pairs	
	lone pair AND octet shape = (trigonal) pyramidal	[1] [1] [1]
(ii)	$sigma(\sigma)$ bond	
	OR OR	[1]
	$\operatorname{pi}(\pi)$ bond	
		[1]
(b) (i)	forward and backward reactions occurring <u>at same rate</u> OR the rate of forward and backward reactions are equal	[1]
(ii)	M1 = decreased yield of products /less products formed / ora M2 = left-hand side has fewer moles of gas OR	[1]
	equilibrium shifts to the <u>left</u>	[1]
(c)	E _a with catalyst F _a without catalyst molecular energy	
	M1 = correct Boltzmann curve	[1]
	M2, M3 any 2 from:	[1]
	 line for both E_a values or statement in text that catalyst lowers E_a (catalyst) increases proportion/number of molecules/particles with energy ≥ activation energy so more frequent successful collisions 	[1]
(d) (i)	nucleophilic addition	[1]
(ii)	He	
	H ₃ C CH ₃ H ₃ C CN CH ₃ CH ₃ CH ₃	
	CN correct dipole on carbonyl	[1]
	curly arrow from lone pair on CN ⁻ AND from C=O to O correct intermediate	[1] [1]
	curly arrow from lone pair on O⁻ to H⁺ correct product	[1] [1]

 $148.\ 9701_s16_ms_22\ Q\hbox{:}\ 5$

(-) (!)		
(a) (i)	acidified/H ⁺	
	AND	
	potassium/sodium dichromate	[1]
(ii)	distillation (rather than reflux)	[1]
	(ensures aldehyde escapes) to avoid further oxidation/to avoid forming acid/as reflux causes further oxidation	[1]
(b)	reaction 3 – (conc) H ₂ SO ₄ /(conc) H ₃ PO ₄ or Al ₂ O ₃ /pumice/porcelain/porous pot/ceramic	
	AND heat	
	reaction 4 – KBr/NaBr with (conc) H ₂ SO ₄ or (red)P and Br ₂ /PBr ₃	[1]
	AND heat	[1]
(c) (i)	CH ₃ CH ₂ H CH ₃ CH ₂ H CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	[1] [1] [1] [1]
(ii)	OH OH CH ₃ CH ₂ CN NC CH ₂ CH ₃	[1+1]
(iii)	attack/attach from either side/above or below/from two directions because the carbonyl/ molecule is planar/trigonal/flat/because of the shape of the molecule OR product is chiral/has a chiral carbon/has a carbon attached to four different groups/has a chiral centre/is asymmetric (equal) chance of forming either (of the two optical isomers)/mechanism doesn't distinguish between the two (optical isomers)/able to form either/chance of forming/able to form 50:50 OR because the carbonyl/molecule is planar/trigonal/flat OR because of the shape of the molecule (equal) chance of forming either (of the two optical isomers)/mechanism doesn't distinguish between the two (optical isomers)/able to form either/chance of forming/able to form 50:50	[1] [1]
	**	

149. 9701_w16_ms_21 Q: 5

(a)	ОН	1	1
(b)	$H^{+}/Cr_{2}O_{7}^{2-}$	1	2
	(heat under) reflux	1	
(c)	H*/Cr ₂ O ₇ ²⁻	1	2
	(heat and) distil	1	
(d)	(1-)propyl propanoate	1	1
	Total:		6

 $150.\ 9701_w16_ms_22\ Q\hbox{:}\ 5$

(a)(i)	Cl● and ●CH ₃	1
(a)(ii)	Cl ⁻ and ⁺ CH ₃ /CH ₃ ⁺	1
(b)(i)	Oxidation OR reduction	1
(b)(ii)	Condensation	1
(b)(iii)	Reduction OR oxidation OR addition	1
(b)(iv)	Addition	1
	Total:	6

 $151.\ 9701_S15_ms_21\ Q:\ 3$

_			
(a)		Bond breaking = C=O = 740 C-H = 410 = 1150 kJ	[1]
		Bond forming = C-C = 350 C-O = 360 O-H = 460 = 1170 kJ	[1]
		Enthalpy change = 1150 – 1170 = –20 kJ mol ^{–1}	[1]
(b)	(i)	Stereoisomerism = (molecules with the same molecular formula and) same structural formula but different spatial	
		arrangements of atoms	[1]
		Chiral centre = atom with four different atoms/groups attached	[1]
	(ii)	(Planar) carbonyl so (equal chance of nucleophile) attacking either side	[1]
(c)	(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	••	M1 = lone pair AND curly arrow from lone pair to carbonyl C M2 = partial charges on C=O AND curly arrow from bond (=) to $O^{\delta-}$ M3 = structure of intermediate including charge M4 = lone pair AND two correct curly arrows (from lone pair to H AND from H—C to C) M5 = CN ⁻	[1] [1] [1] [1]
	(ii)	(CN⁻ regenerated so) catalyst	[1]

 $152.\ 9701_S15_ms_22\ Q\hbox{:}\ 4$

(a) (i)	$\mathbf{A} = \mathbf{CH}_3\mathbf{CH}_2\mathbf{CH}_2\mathbf{CHO}$	[1]
	$\mathbf{B} = \mathbf{CH}_3\mathbf{CH}_2\mathbf{CH}(\mathbf{CH}_3)\mathbf{CHO}$	[1]
	$\mathbf{C} = (CH_3)_2 CHCH_2 CHO$	[1]
	$\mathbf{D} = (CH_3)_3 CCHO$	[1]
(ii)	H ₃ CCH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	[1+1]
(b) (i)	Fehling's/Benedict's OR Tollens' OR dichromate OR manganate Warm/heat Fehling's/Benedict's =(Brick)-red ppt Tollens' = silver/mirror OR grey/black precipitate Dichromate = orange to green Manganate = purple to colourless with the aldehyde/A-D	[1] [1]
(ii)	(2,4-)DNP(H)/Brady's reagent	[1]
	Orange/yellow/red-orange/yellow-orange ppt	[1]

153. 9701_S15_ms_23 Q: 3

c =o	[1]
	[1]
	. ,
(ii) Chain	[1]
(iii) Silver mirror/ppt/solid (black/grey)	[1]
(b) (i) D	[1]
CH ₂ =C(CH ₃)CH ₂ OH	
E E	
H ₃ C	[1+1]
H CH ₂ OH H H	[1]
trans OR <i>E</i> cis OR <i>Z</i>	[1]
F 60	
H ₂ C=CHCH ₂ CH ₂ OH	
(ii) Hydrogen	[1]
(c) (i) $C_3H_6O + [O] \rightarrow C_3H_6O_2$	[1]
(ii) $C_3H_6O + 2[H] \rightarrow C_3H_8O$	[1]

154. 9701_s21_ms_21 Q: 1

Question	Answer	Marks
(a)(i)	option 1 M1 the mass of a molecule OR the (weighted) average / (weighted) mean mass of the molecule(s)	1
	option 1 and M2 relative / compared to 1 / 12 (the mass) of an atom of carbon–12	1
	OR on a scale in which a carbon–12 atom / isotope has a mass of (exactly) 12 (units) option 2 M1 mass of one mol of molecules	
	option 2 M2 relative / compared to 1 / 12 (the mass) of 1 mol of C-12 OR which one mol C-12 (atom / isotope) has a mass of (exactly) 12 g	
(a)(ii)	CO ₂ H	
(a)(iii)	$0.18/90 \times 2 \times 6.02 \times 10^{23} = 2.408 \times 10^{21} \text{ (atoms) OR } 2.4(1) \times 10^{21} \text{ (atoms)}$ M1 no mole ethanedioic acid $0.18/90 = 0.0020$,
	M2 no mole ethanedioic acid \times 2 0.0020 \times 2 = 0.0040	1
	M3 no mole ethanedioic acid \times 6.02 \times 10 ²³ 2.4 \times 10 ²¹	1
(b)(i)	$CaC_2O_4(s) \rightarrow CaO(s) + CO_2(g) + CO(g)$ M1 correct formulae	1
	M2 balancing equation AND state symbols.	1
(b)(ii)	(thermal) decomposition OR disproportionation	1
(b)(iii)	calcium carbonate / CaCO ₃	1

$155.\ 9701_s21_ms_21\ Q:\ 4$

Question	Answer	Marks
(a)	Br/bromine as the oxidation number of Br decreases/goes from $0 \rightarrow -1$ OR bromine as it causes oxidation number of C (in methanoic acid) to increase/go from $(+)2 \rightarrow (+)4$	1
(b)	(solution) turns (from brown / orange / red to) colourless / decolorises OR brown / orange / red fades	1
(c)(i)	rate = total change in concentration of Br ₂ divided by time taken calculation dependent on graph $(100 \times 10^{-5} - 12 \times 10^{-5})/600$ M1 average rate of reaction 1.47 × 10 ⁻⁶	1
	M2 units mol dm ⁻³ s ⁻¹	1
(c)(ii)	graph shown on same axes has steeper initial gradient AND reaches the same final [Br ₂]	1
(c)(iii)	M1 (at increased temp the average kinetic) energy of particles / species / molecules increases.	1
	M2 (many) more/greater proportion of particles with energy ≽ E _a	1
(d)	O X H	1
	M1 correct bonding electrons	
	M2 correct number of non-bonding electrons around each oxygen	1

 $156.\ 9701_s20_ms_22\ Q\hbox{:}\ 5$

(a)	Rxn.	name of mechanism	Name of reagents and conditions	6
	1	M1 electrophilic addition	M2 steam AND concentrated phosphoric acid (catalyst)	
	2		M3 & M4 Two marks for name of reagent and both conditions. One mark for name of reagent and one conditions acidified potassium dichromate ((VI)) condition 1 warm condition 2 distil NOT reflux	
	6	M5 nucleophilic substitution	M6 ammonia (alcoholic) AND heat in a sealed tube / heat under pressure	
(b)(i)	H δ+ C:	0- → H ₀ C − C − C − C − C − C − C − C − C − C −	Using CN (from KCN) as the catalyst	3
	M2 co		ons on :CN to C of C=O D arrow from the double bond to or beyond the O of C=O rons on O of intermediate to H of HCN AND arrow from H-C bond to C of H-C=N	
(b)(ii)	M1 nit	W in any order rile econdary) alcohol		2
(b)(iii)	HOALLO\	OH N any unambiguous struct	ture	1

157. $9701_{w15}_{ms_22}$ Q: 4

(a) (i)	Nucleophilic Substitution	[1]
(ii)	Has a chiral centre/carbon OR has a carbon/C attached to 4 different groups/atoms/chains OR	[1]
(iii)	has no plane/line of symmetry	
()	H ₃ C CH ₃ H ₃ C CH ₂ CH ₃ H ₆ CH ₃	[1+1]
(iv)	Elimination	[1]
(v)	H ₃ C CH ₃ H ₃ C CH ₃	[1]
	cis-but-2-ene trans-but-2-ene	[1]
(vi)	But-1-ene	[1]
	2 Hs on one of the double-bonded Cs OR does not have 2 different groups on both atoms/each atom in C=C	[1]
(b) (i)	ammonia/NH ₃	[1]
(ii)	propanoyl chloride / C₂H₅COCl	[1]
(iii)	CH₃CH(NHCOC₂H₅)CH₃	[1]
(iv)	Reduction LiAlH ₄ /NaBH ₄ /H ₂ and Ni/tin and concentrated HCl	[1] [1]
(v)	aluminium oxide	[1]
(vi)	H ₃ C-C-C-C-CH ₃ H ₃ C-C-C-C-CH ₃ H ₃ C-C-C-C-CH ₃	
	M1 = correct structure of Y and curly arrow from double bond to H M2 = dipole and curly arrow from H-Br bond to Br M3 = correct intermediate M4 = Br ⁻ with lone pair and curly arrow from lone pair to C(+)	[1] [1] [1] [1]
(vii)	electrophilic addition	[1]
(viii)	secondary carbocation more stable than primary due to electron releasing character/(positive) inductive effect of alkyl groups	[1] [1]

 $158.\ 9701_s20_ms_23\ Q{:}\ 5$

(a)(i)	dehy	/dration		1
(a)(ii)	M2 d	correct identification of butan-2-ol correct displayed formula including correct H H H -C-C-C-H I H O H	connectivity of C–O–H	2
(a)(iii)	isor	mer name		1
	С	cis but-2-ene		
	D	trans but-2-ene		
	E	but -1-ene		
		arks for 3 correct names ark for 2 correct names		
(b)(i)		Functional group	0.	3
	F	M1 Ester / RCOOR(1) / RCO ₂ R(1)		
	G	M2 Carboxyl / carboxylic acid / RCOOH	. 29	
	Н	M3 Alcohol / hydroxy / R-OH		
(b)(ii)	triioc	lomethane		1
(b)(iii)		G = HCOOH / HCO ₂ H H = C ₂ H ₅ OH	7 0.	2

 $159.\ 9701_s19_ms_22\ Q\hbox{:}\ 5$

(a)(i)	(n–)propyl ethanoate	.0	1
(a)(ii)	NaOH / sodium hydroxide		1
a(iii)	H H H H-C-C-C-O H H H H		1
(a)(iv)	perfume / solvent		1
(b)(i)	M1 divide by A _r	н о	1
	54.5 / 12	9.1/1 36.4/16	
	M2 divide by smallest number		
	4.54 / 2.275 (= 2 OR 1.99) 9	.1/2.275(=4) 2.275/2.275 (=1)	
	M3 empirical formula based on correctly rounded values of M	2	
		C_2H_4O	
(b)(ii)	(relative) molecular mass / M _r		•
(c)(i)	C ₃ H ₆ O ₂		
(c)(ii)	X and Z – no reaction / no (visible) change		
	Y – effervesces		
(d)	2HCO ₂ H + Na ₂ CO ₃ → 2HCO ₂ Na + CO ₂ + H ₂ O		

160. 9701_m21_ms_22 Q: 3

Question	Answer	Marks
(d)(i)	addition polymerisation	1
(d)(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
(d)(iii)	propan-1-amine / 1-aminopropane	1
(d)(iv)	alcoholic / ethanolic solution AND high pressure / heat in a sealed container	1

 $161.\ 9701_s21_ms_22\ Q\hbox{:}\ 5$

Question	Answer	Mark
(a)	displayed formula of butan-2-ol structure with O—H shown	1
(b)(i)	2-bromobutane	1
(b)(ii)	substitution	1
(b)(iii)	reagent M1 NaCN or KCN	1
	conditions M2 ethanolic AND heat (under reflux)	1
(b)(iv)	(1)C₄H₃CN + (1)H⁺ + 2H₂O → (1)C₄H₃CO₂H + (1)NH₄⁺ ✓ ✓ correct organic product showing carboxylic acid functional group M1 C₄H₃CO₂H / C₄H₃COOH	1
	M2 balanced equation with a C₅H₁₀O₂ or equivalent structure as product	1
(b)(v)	2200–2250 (cm⁻¹ due to) C≡N / triple bond between C and N.	1

162. 9701_w21_ms_21 Q: 4

Question	Answer	Marks
(a)(i)	potassium/sodium dichromate [(VI)] / K ₂ Cr ₂ O ₇ / Na ₂ Cr ₂ O ₇	2
	acidified AND (heat) under reflux	
(a)(ii)	$C_2H_5OH + 2[O] \rightarrow CH_3CO_2H + H_2O$	1
(a)(iii)	substitution	1
(a)(iv)	in the same phase / in same state	1
(b)	M1 ester	3
	M2 1100 cm ⁻¹ linked to C—O AND 1720 cm ⁻¹ linked to C=O	
	M3 No COOH / carboxylic acid and No OH / alcohol in D (but present in C)	
	OR	
	COOH / carboxylic acid and OH / alcohol reacted /lost (in C to form D)	
(c)(i)	NaO OH OR Na+ OO OH	1
(c)(ii)	Not a strong (enough) reducing agent	1

Question	Answer	Marks
(c)(iii)	Construct an equation $(CH_2OH)_2 + SOCl_2 \rightarrow (CH_2Cl)_2 + SO_2 + H_2O$	1
(d)	Forms hydrogen bonds with water	1

 $163.\ 9701_s20_ms_21\ Q:\ 6$

(a)		1
(b)(i)	hot AND concentrated	1
(b)(ii)	oxidation	1
(c)	Structural formula of X : HCO₂H OR HCOOH	1
(d)	M1 reagent (2,4–) DNPH / (2,4)-dinitrophenylhydrazine M2 observation yellow / orange / red precipitate	2
(e)	Predict two differences, with reasons, between spectra of Y, CH ₃ CH ₂ COCH ₃ and 2-methylbut-1-ene (shown) first difference M1 absence of peak/ absorption at 3100 (cm ⁻¹) as no longer any =C-H present (in Y) second difference M2 peak at 1650 (cm ⁻¹) moves to the left to any value / range of values between 1670 and 1740) due to disappearance of C=C (in Y) and appearance of C=O (in Y) OR absence of peak at 1650 (cm ⁻¹) as no longer any C=C present (in Y) AND appearance of peak (in Y) at (any value / range of values) between 1670-1740(cm ⁻¹) due to C=O	2
(f)(i)	CH ₃ CH ₂ CO ₂ H + 4[H] → CH ₃ CH ₂ CH ₂ OH + H ₂ O	1
(f)(ii)	propan-1-ol ALLOW propan-2-ol as error carried forward from 6f(i)	1
(g)(i)	Molecular formula of W C ₃ H ₆ O ₂	1
(g)(ii)	Possible structure of W CH ₃ COOCH ₃ OR HCOOCH ₂ CH ₃	1

 $164.\ 9701_w20_ms_21\ Q:\ 3$

(a)(i)	M1: correct representation of Al ₂ Cl ₆ , dot and cross or line diagram	2
	CI AI CI CI CI	
	M2: TWO correct co-ordinate bonds identified	
(a)(ii)	120	1
(a)(iii)	Li ⁺ is 1s ² H ⁻ is 1s ²	1
(a)(iv)	(Lattice of) cations / positive ions surrounded by delocalised electrons'	1
(b)	Al(OH) ₃ / aluminium hydroxide	1
(c)(i)	M1: potassium dichromate[(VI)]	2
	M2: acid(ified) AND (heat under) reflux	
(c)(ii)	(M1: correct identity of R and statement re: reaction 3 ONLY ketone reduced) R (is 2-hydroxybutanoic acid) AND as (only) C=O / ketone reduced	2
	(M2: correct explanation re: strength of reducing agents) NaBH ₄ cannot reduce the COOH / carboxylic acid OR LiA IH ₄ can reduce the COOH / carboxylic acid	
(c)(iii)	δ C C ₂ H ₅ H CN ΘΟ C ₂ H ₅ H CN	4
	 M1: Presence of :CN (if bonding shown, must be unambiguous triple bond) M2: curly arrow from :CN lone pair to carbonyl carbon M3: correct dipole AND curly arrow from double bond to oxygen M4: correct intermediate drawn 	
(c)(iv)	$C_2H_5CH(OH)CN + HCI + 2H_2O \rightarrow C_2H_5CH(OH)COOH + NH_4CI$	1
(c)(v)	Any two of three absorption references: • absorption 2200–2250 (cm ⁻¹) shows presence of C≡N • lack of absorption at 1680–1730 (cm ⁻¹) shows lack of C=O • lack of absorption at 2500–3000 (cm ⁻¹) shows lack of RCO ₂ –H / O–H in RCO ₂ H	2

165. 9701_w20_ms_22 Q: 4

(a)(i)	oxidation						
(a)(ii)	M1: potassiur	n dichromate[(VI)]				
	M2: acid(ified) AND (heat unde	r) reflux				
(a)(iii)	structure of H	.ONa	O(CH2)2CH2O ⁻ N	la ⁺			
(a)(iv)	(formation of)	silver mirror / ppt					
(a)(v)	esterification						
(b)(i)	positional (iso	merism) / regioiso	merism				
(b)(ii)	M1: add aque	ous alkaline iodin	е				
	M2: G no change AND J yellow ppt						
(b)(iii)	reducing ager	nt		0.			
(b)(iv)	(1,3-)butadien	ne OR buta(-1,3-)o	diene OR				
(c)							
	reagent	result with P	result with Q				
	Br ₂ (aq)	no change / stays orange	no change / stays orange				
	2,4-DNPH	no change	orange ppt	XO .			
	Na ₂ CO ₃	effervescence	no change				
	Award one ma	ark for every two	correct observation	ons.			
(d)(i)	X is C=O AND	D Z is C—O		P 0			
(d)(ii)	hexanoic acid						
(d)(iii)	C ₁₂ H ₂₀ O ₂		<u> </u>				

 $166.\ 9701_m19_ms_22\ Q\hbox{:}\ 3$

(a)	0	Р	Q	R	
	Na(s)	effervescence	no reaction	no reaction	
	2,4-DNPH	no reaction	orange ppt	orange ppt	
**	acidified K ₂ Cr ₂ O ₇ (aq)	no reaction	no reaction	(turns) green	
b) $C_5H_{10}O + 2[H] \rightarrow C_5H_{12}O$	0				
M1 geometric(al) M2 OHC CH ₂ CH ₃ H H					
M1 compound P					
M2 (absorption at) 2250 cr	m ⁻¹ AND C≣N (stret	ch)			
M3 (absorption at) 3100–3	3700 cm ⁻¹ AND O—	H (stretch)			

167. 9701_w19_ms_22 Q: 4

(a)	H ₃ C H	2
	H_3C $\stackrel{\delta^+}{\longrightarrow}$ $\stackrel{\delta^-}{\subset}$	
	H H H	
	*:OH M1: curly arrow from lone pair on O of OH ⁻ to C of C—C <i>l</i>	
	M2: correct dipole on C—C l AND curly arrow from C—C l bond to C $l^{\delta-}$	
(b)(i)	H₃C H	1
	H₃C − Ċ − Ċ − H	
	HO CH ₂ OH	
(b)(ii)	(CH ₃) ₂ CHCH(OH)CH ₂ OH	1
(b)(iii)	optical (isomerism)	1
(b)(iv)	$C_5H_{12}O_2 + 3[O] \rightarrow C_5H_8O_3 + 2H_2O$	1
(c)(i)	Add bromine water / Br ₂ (aq) AND turns (from orange / brown to) colourless	1
(c)(ii)	CH ₃ H	1
(d)(i)	3-methylbutan-1-ol	1
(d)(ii)	heterogeneous	1
(d)(iii)	M1: skeletal formula of Q	2
	ONLY	
	M2: one commercial use of Q (ethyl isovalerate / ethyl 3methylbutyrate)	
	solvents / perfumes / flavourings	
(e)(i)	1500–1680 (cm ⁻¹) AND C=C	1
(e)(ii)	potassium cyanide / KCN / sodium cyanide / NaCN	1
(e)(iii)	(acidic) hydrolysis	1
(e)(iv)	M1: recognise this reaction involves less stable intermediate 1° (carbo)cation (intermediate) is less stable (than 3°)	2
	M2: explain difference in reactivity in terms of positive inductive effect – comparative answer lower (positive) inductive effect / lower (+)I OR inductive effect of less alkyl groups	

 $168.\ 9701_m18_ms_22\ Q:\ 4$

(a)(i) (a)(ii)		
(3//!!)	ultraviolet / UV light	1
(a)(II)	initiation HC1	4
	propagationCl	
(b)	elimination	1
	acidified AND KMnO ₄	2
(c)(i)	hot AND c(oncentrated)	
(c)(ii)	cyclohexene would have absorption at 1500–1680 (cm ⁻¹) because of C=C (and adipic acid would not)	max 3
	cyclohexene would have absorption at 3000–3100 (cm ⁻¹) because of =C—H/C—H in alkene (and adipic acid would not)	
	adipic acid would have absorption at 2500–3000 (cm ⁻¹) because of O—H/CO ₂ —H (and cyclohexene would not)	
	adipic acid would have absorption at 1040–1300 (cm ⁻¹) because of C—O (and cyclohexene would not)	
	adipic acid would have absorption at 1640–1750 (cm ⁻¹) because of C=O (and cyclohexene would not)	
	APalpa Califilo	

169. 9701_w18_ms_21 Q: 4

	1						<u> </u>
(a)	reagent	observation with glycolic acid	does a reaction occur? √/×	functional group			4
	Na ₂ CO ₃ (aq)	effervescence / fizzing / bubbling	✓	COOH / carboxylic acid			
	2,4-DNPH	no visible reaction owtte	×	(no group required)			
	acidified Cr ₂ O ₇ ²⁻	orange to green	√	-OH / alcohol			
	1 mark for eac	th in column 2 (obs)					
(b)(i)	H H-C-C <u>=</u> N OH					30	1
(b)(ii)	hydrochloric / s	sulfuric / nitric / phos	phoric acid		•	$\mathbf{x} \odot \mathbf{x}$	1
(b)(iii)	free-radical su	bstitution			<u> </u>		1
(b)(iv)	UV (light) / sun	nlight			-		1
(b)(v)		H n [−] OH AND curly ar ole on C—Br AND (althi		2
(c)(i)	reducing agen		/ / / / / / / / / / / / / / / / / / /				1
(c)(ii)	C ₂ H ₂ O ₃ + 2[H	H] → C ₂ H ₄ O ₃ molecular formulae	C ₂ H ₂ O ₃ and	C ₂ H ₄ O ₃			2
(d)(i)	M2 range with	vould have: 0 due to RCO ₂ -H in 3200–3650 due to	RO-H				2
	M1 2500-3000	ould NOT have; 0 due to RCO ₂ -H in 3200–3650 due to	o RO–H				
(d)(ii)	0=	=0					2
	M1 ANY ester M2 correct cyc	group AND valid C ₂ clic structure	H ₄ O ₄ molec	ule			

 $170.\ 9701_w18_ms_22\ Q:\ 3$

(a)	$\Delta H_{\rm r} = (-692.9) + 3(-61.8) - (-182.1) - 3(-204.6)$ = -82.4 (kJ mol ⁻¹)	3
	M1 $\Delta H_r = x(-692.9) + y(-61.8) - v(-182.1) - w(-204.6)$ where x y v and w are integers ≥1 [1]	
	M2 use of correct stoichiometry where $x = 1$ $y = 3$ $v = 1$ and $w = 3$ [1]	
	M3 –82.4 [1]	
(b)(i)	1 mark for each bullet, max 3 • particles / molecules have (mass but) negligible size / volume (compared to total volume of gas / container) • no / negligible forces / interactions between particles / molecules • collision between particles / molecules are elastic • gas obeys (all) basic gas laws	3
(b)(ii)	M1 particles / molecules are (so) close [1] M2 particle / molecule size becomes significant [1] OR repulsive forces between particle / molecules become significant	2
(c)(i)	$CHCl_3 + \frac{1}{2}O_2 \rightarrow COCl_2 + HCl$	1
(c)(ii)	M1 X marked on peak at 1670–1740 cm ⁻¹ [1] M2 CHCI ₃ has no C=O [1]	2
(c)(iii)	(lt / CHC / ₃ has a) peak at 2850–2950 (cm ⁻¹) OR carbonyl dichloride spectrum has no peak 2850–2950 (cm ⁻¹)	1
	APalpa Califilation	

171. 9701_m17_ms_22 Q: 3

71. 9701_m17	_ 1115_22		
(a)(i)	N=c-C-C-C-H H H H H N=t-C-C-C-H H H H H		1
(a)(ii)	reaction 1 = HCl(aq)		1
	reaction 2 = (conc.) NaOH/KOH AND ethanol		1
(a)(iii)	H C ₂ H ₅ C-C backbone with dangling bonds rest of structure	1 1	2
(b)	CH ₂ CH ₂ CH ₃ HO—C H H CH ₂ CH ₂ CH ₃ HO—C H H CH ₂ CH ₂ CH ₃ H CH ₂ CH ₂ CH ₃ H H CH ₂ CH	1 1 1	3
(c)(i)	(electrophilic) addition		1
(c)(ii)	S has CH₃CHOH OR methyl/CH₃ group next to CHOH		1
(c)(iii)	positive inductive effect of more alkyl groups/more alkyl groups donate electron density		1
	secondary carbocation/secondary intermediate is more stable (than primary)		1
(c)(iv)	S =		1
••	T = HO		1
	U =		1
(c)(v)	CH ₃ CHOHCH ₂ CH ₃ + [O] → CH ₃ COCH ₂ CH ₃ + H ₂ O		1
(d)(i)	methyl pentanoate		1
(d)(ii)	(compound V is) spectrum X		1
	spectra X and Z show a C=O (stretch) at 1730 (cm ⁻¹)		1
	spectra Y and Z show O–H (stretches) above 2500 (cm ⁻¹)		1
	V has a C=O (bond) and no O–H (bond)		1
	I		

172. 9701_s17_ms_22 Q: 4

(a)(i)	(A =)	
(a)(ii)	(A / straight chain) has strong(er) (temporary dipole-) induced dipole (attractions) ora	
	(because A / straight chain has) bigger (surface) area / more (points of) contact (in unbranched isomer) ora OR (so) more energy required to break the intermolecular forces ora	
(a)(iii)	CH ₃ CHCHCH ₃ OR CH ₃ CH=CHCH ₃	
(a)(iv)	No rotation / restricted / limited rotation of C=C / (carbon) double bond	
(// /	One (of the two) methyl groups / one (of the two) H (atoms) is on each C (of C=C)	
(a)(v)	H ₃ C H ₃ C H H ₃ C H C ₀ Br O _R Br O _R	
	arrow from the C=C double bond drawn to the bromine	
	dipole on Br ₂ in correct orientation AND arrow from the Br-Br bond to the Br ⁵	
	correct carbocation / bromonium ion from the structure with C=C drawn	
	Br¯ with lone pair, negative charge AND arrow from lone pair to the carbon atom of intermediate OR using both arrows shown (in alternative diagram)	
(a)(vi)	electrons in pi bond induce it (the dipole) OR (high) electron density in pi bond / double bond / C=C repels electrons (away from nearest Br) OR polarised by (high) electron density in pi bond / double bond / C=C	
(b)(i)	C = (2-)methylpropan-2-ol / (CH₃)₃COH / any unambiguous structure	
	D = (2-)methylpropan-1-ol / (CH ₃) ₂ CHCH ₂ OH / any unambiguous structure	
	E = (2-)methylpropanoic acid /(CH ₃) ₂ CHCO ₂ H / any unambiguous structure	
	CH ₃	
(b)(ii)	$2C_4H_8O_2 + Na_2CO_3 \rightarrow 2C_4H_7O_2Na + H_2O + CO_2$	
(c)(i)	triiodomethane	
(c)(ii)	F = CH ₃ CH ₂ COCH ₃	
	$\mathbf{G} = \mathbf{C}_2 \mathbf{H}_5 \mathbf{C} \mathbf{H} (\mathbf{C} \mathbf{H}_3) \mathbf{C} \mathbf{H} \mathbf{O}$	
(c)(iii)	a (tetrahedral) atom with four different groups / atoms / substituents attached OR a carbon (atom) with four different groups / atoms / substituents attached	
(d)(i)	H C=O (group / bond) AND O-H (group / bond)	
	I C=O (group / bond) AND C-H (group / bond)	
(d)(ii)	H = ethanoic acid	
	I = methyl methanoate	
	Total:	

 $173.\ 9701_m16_ms_22\ Q{:}\ 5$

(a) (i)	Q R OH	[1] [1]
	S OH T I	[1] [1]
(ii)	pent-3-en(e)-2-one OR 3-penten-2-one	[1]
(iii)	red/orange/yellow precipitate/solid	[1]
(b)	This question was discounted.	F41
	M1 = decolourises bromine/1500–1600 cm ⁻¹ = alkene M2 = absorption at 1700 cm ⁻¹ is C=O	[1] [1]
	AND (very) broad absorption at 2500–3000 cm ⁻¹ is O—H = carboxylic acid M3 = no cis-trans so terminal alkene	[1]
	OR chiral so contains a carbon atom with 4 different groups attached M4 = U is	[1]
	and the second	
	Palpacalli	
•		

 $174.\ 9701_s16_ms_21\ Q\hbox{:}\ 5$

(a)	Η Η Π 8 ₊ δ ₋	
	$H_3C - \stackrel{\circ}{C} + \stackrel{\circ}{Br} \longrightarrow H_3C - \stackrel{\circ}{C} - CN + Br^-$	
	CN	
	M1 = lone pair on C of CN- AND curly arrow from lone pair to C of C—Br	[1]
	M2 = correct dipole on C—Br, curly arrow from C—Br bond to Br AND Br	[1]
(b) (i)	reduction	[1]
(ii)	disappearance of peak/dip/trough/absorption at 1680-1730	[1]
	due to (loss of) C=O	[1]
	OR	
	peak at 3200–3650	[1]
	due to (alcohol) O—H (formation)	[1]
(c) (i)	sodium/potassium hydroxide aqueous	[1] [1]
(ii)	ethanol	[1]
(d) (i)	(conc) H ⁺ /(conc) acid/(conc)H ₂ SO ₄ /(conc)H ₃ PO ₄	[1]
(ii)		
		[1]
(iii)	ethyl propanoate	[1]
(e) (i)	V = CH ₃ CH ₂ CHCHCH ₂ CH ₃ / CH ₃ CH ₂ CH=CHCH ₂ CH ₃ T = CH ₃ CH ₂ CH(OH)CH ₂ CH ₃	[1] [1]
(ii)	V = geometric(al)/ cis-trans/ E–Z T = optical	[1] [1]

175. 9701_s16_ms_22 Q: 4

(a)	CH ₃ CH ₂ COOH	[1]
	(CH ₃) ₂ CHCOOH/CH ₃ CH(CH ₃)COOH	[1]
(b) (i)	Two from 1. CH₃CH₂COOCH₃ 2. CH₃COOCH₂CH₃ 3.HCOOCH₂CH₂CH₃	[1] [1]
(ii)	correct acid + alcohol for either ester 1. methanol + propanoic acid 2. ethanol + ethanoic acid 3. propan-1-ol + methanoic acid	[1]
	(conc)H₂SO₄/(conc)H₃PO₄ AND heat/warm/reflux	[1]
(c)	Peak at 1710–1750 (for ester) due to C(=)O Peak at 1500–1680 (for X) due to C(=)C / alkene Peak at 3200–3650 (for X) due to (alcohol) O(–)H	[1] [1] [1]

 $176.\ 9701_s16_ms_23\ Q:\ 4$

(a)	3-hydroxybutan(-2-)one	[1]
(b)	H ₂ /Cr ₂ O ₇ ²⁻ or names	[1]
	heat/reflux/warm	[1]
(c) (i)	absorption at 1670–1740 C (=) O absorption at 2850–3000 C (-) H absorption at 3200–3650 O (-) H	[1] [1] [1]
(ii)	no absorption at 3200–3650 O-H disappears / no O-H bond in diacetyl	[1] [1]
(d) (i)	CH ₃ COCH(=)CH ₂	[1]
(ii)	one of the double-bonded C atoms/first C has 2H atoms attached ora so no cis-trans/ <i>E-Z</i> /geometric(al) isomerism possible OR no chiral C so mirror images superimposable/molecule not asymmetric	[1]
(iii)	asymmetric/chiral C atom/carbon with four different groups/atoms attached	[1]
(iv)	COCH ₃ H ₃ COC Br CH ₃ H ₃ C Br	[1+1]

177. 9701_w18_ms_22 Q: 1

(a)	particle	relative mass	relative charge	location	total number in an atom of ¹⁹⁷ Au	4
	electron	0.0005	2	shell(s) [1]	79	
	neutron	1.(001) [1]	0 [1]	nucleus	118 [1]	
(b)	metallic					1
c)(i)	M1 (atoms of the same element) with the same proton / atomic number [1] M2 (but) different number of neutrons/mass number [1]					2
;)(ii)	same number of electrons/electronic structure					1
d)(i)	(100 - 56.36 - 25.14) = 18.5(0)					1
d)(ii)	M1 correct use of ⁶³ Cu and ⁶⁵ Cu and their % abundance [1]					2
	M2 ÷ (56.36 + 25.14) AND answer correct to two decimal places [1]					

