

Cambridge AS & A Level

CHEMISTRY Paper 2

Topical Past Paper Questions

+ Answer Scheme

2015 - 2021

Chapter 6

Electrochemistry

6.1 Redox processes: electron transfer and changes in oxidation number

 $23.\ 9701 \ \ s20 \ \ qp \ \ 21 \ \ Q:\ 2$

- (a) The equation shown in (a)(i) describes the reaction which occurs when aqueous potassium iodide is added to aqueous copper(II) sulfate. A white precipitate of copper(I) iodide forms in a brown solution of iodine and potassium sulfate.
 - (i) Balance the equation and include state symbols.

.....CuSO₄(.....) +KI(.....)
$$\rightarrow$$
CuI(.....) +I₂(.....) +K₂SO₄(.....) [2]

The table gives the oxidation numbers of iodine in the different species in the equation.

iodine-containing species	oxidation number of iodine
KI	-1
CuI	-1
I_2	0

- (ii) Deduce the oxidation number of copper in CuSO₄ and CuI.
 - oxidation number of copper in CuSO₄

[1]

(iii)	Describe the type of reaction shown by the equation in (a)(i). Explain your answer in terms of electron transfer.
	[2

(b) In the reaction described in (a)(i), a student uses 17.43 g of CuSO₄•yH₂O. By further titration of the reaction products the student concludes that the total amount of CuSO₄ in the sample is 0.0982 mol.

Use the *Data Booklet* to complete the table to calculate the value of **y**, where **y** is an integer. Show your working.

mass of 0.0982 mol CuSO ₄	g
amount of H ₂ O in 17.43g of CuSO ₄ • y H ₂ O	mol H ₂ O
value of y	y =

[4]

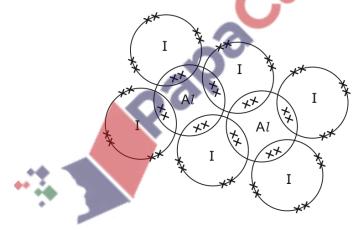
[Total: 9]

24. 9701_s19_qp_23 Q: 2

lodine is an element in Group 17 of the Periodic Table.

(a)	(i)	At room temperature, ic	dine solid has a lattice structure.
-----	-----	-------------------------	-------------------------------------

Describe the arrangement of the iodine molecules within the solid.


(ii) List all of the forces of attraction present in solid iodine and identify which of these are overcome when solid iodine is heated to produce iodine vapour.

force(s) of attraction present

force(s) of attraction overcome

lodine reacts with aluminium to form a white solid, Al_2I_6 .

(b) The diagram shows the arrangement of the outer electrons within a molecule of Al_2I_6 .

(i)	How many	co-ordinate	(dative	covalent)	bonds	are	made	when	а	molecule	of	Al_2I_6	is
	formed from	its atoms?											

.....[1]

(ii) Describe how co-ordinate (dative covalent) bonds form within this molecule.

[11]

[2]

(c)	In a	reaction	between	hydrogen	iodide	and	concentrated	sulfuric	acid,	the	products	are
	hydro	ogen sulf	ide, sulfur,	, iodine and	d water.							

(i)	Write an equation for this reaction.

You may wish to use oxidation numbers to help you.

	[2]
(ii)	Explain, with reference to oxidation numbers, why this reaction is a redox reaction.
	[2]
	[Total: 9]
	Aoalpa Calific
	Co
	0.0

Acidified potassium dichromate(VI) can oxidise ethanedioic acid, $H_2C_2O_4$. The relevant half-equations are shown.

$$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$$

 $\text{H}_2\text{C}_2\text{O}_4 \rightarrow 2\text{CO}_2 + 2\text{H}^+ + 2\text{e}^-$

(a)	State	the	overall	equation	for	the	reaction	between	acidified	dichromate(VI)	ions	and
	ethan	edioi	c acid.									

......[2]

- (b) In an experiment a 0.242g sample of hydrated ethanedioic acid, H₂C₂O₄.**x**H₂O, was reacted with a 0.0200 mol dm⁻³ solution of acidified potassium dichromate(VI).
 - $32.0\,\mathrm{cm^3}$ of the acidified potassium dichromate (VI) solution was required for complete oxidation of the ethanedioic acid.
 - (i) Calculate the amount, in moles, of dichromate (VI) ions used to react with the sample of ethanedioic acid.

(ii) Calculate the amount, in moles, of ethanedioic acid in the sample.

(iii) Calculate the relative molecular mass, M_r , of the hydrated ethanedioic acid.

(iv) Calculate the value of x in $H_2C_2O_4.xH_2O$.

[Total: 6]

