Q1.

(d)

1 mark for each diagram, 1 mark for each correct bond angle If not 3-dimensional diagram – 1 penalty.

[4]

Q2.

(c) (i)
$$H_{o}^{\infty} \underset{\infty}{\overset{\infty}{\sum}} H \tag{1}$$

(ii) non-linear/bent/V-shaped (1)

(iii) H₂O has hydrogen bonds/H₂S does not <u>or</u> H₂S has van der Waals' forces only (1)

hydrogen bonds are stronger
than van der Waals' forces <u>or</u>
H₂S has weaker intermolecular bonds
than H₂O (1) [4]

Q3.

2 (a)
$$\overset{x}{\circ}$$
 $H^{x}{\circ}C^{x}{\circ}C^{\circ}{}_{x}H$ (1) [1]

Q4.

1	(a) (i)	between 117° and 120°	[1]
	(ii)	H."N."N."H	
		14 electrons must be shown single N-N bond lone pair on each N atom	[1] [1]
	(iii)	between 107° and 109°	[1] [4]
		nene – van der Waals' forces drazine – hydrogen bonds	[1] [1]
		drogen bonds are stronger van der Waals' forces are weaker	[1] [3]
(c)		dipole on O—H and N—H bonds	[1]
		n an O atom of H₂O and a H atom of N₂H₄ een an N atom of N₂H₄ and a H atom of H₂O	[1]
	lone pai	r on O atom <i>or</i> on N atom <i>in the H bond</i>	
	i.e.	N: ***** H-0	
	Ć	or 	[1] [3]
	(e) (i)	acid – base/neutralization	[1]
	(ii)	N atom has a lone pair of electrons or N atom can behave as a base or N atom can form dative bond	[1]
	(iii)	each N atom has a lone pair or each nitrogen atom can behave as a base or each nitrogen atom can form a dative bond	[1] [3]

Q5.

- 1 (a) (i) 2(1)
 - (ii) between 104° and 105° (1)

[2]

- (b) ethanal CH₃CHO A (1)
 - ethanol CH₃CH₂OH C (1)
 - methoxymethane CH₃OCH₃ A (1)
 - 2-methylpropane $(CH_3)_2CHCH_3$ **B** (1) [4]
- (c) (i) hydrogen bonds (1)
- (c) (i) hydrogen bonds (1)
 - (ii) correct dipole on an -O-H bond (1)

hydrogen bond shown between the lone pair of an O and a H atom in an -OH group (1)

lone pair on O atom of CH₃OH or H₂O clearly shown in the hydrogen bond (1)

e.g.

or

[4]

(d) hydrogen bonds exist between H₂O molecules (1)

hydrogen bonds cannot form between C₂H₅OC₂H₅ molecules (1)

[2]

[Total: 12]

Q6.

1 (a) Al 1s² 2s²2p⁶ 3s²3p¹

(1)

Ti 1s² 2s²2p⁶ 3s² 3p⁶ 3d² 4s² or

1s2 2s2p6 3s2 3p6 4s23d2 penalise any error

(1) [2]

(b) (i) pass chlorine gas over heated aluminium

(1) (1)

(ii) aluminium glows

(1)

white/yellow solid formed chlorine colour disappears/fades

(1) (1) (any 2)

(iii)

correct numbers of electrons, i.e.

3 • per Al atom and 7x per Cl atom

- i.e. 6 and 42 x in total (1)
- dative bond C1 to A1 clearly shown by xx

(1) [6]

(c) chlorine is a strong/powerful oxidising agent

(1) [1]

(d)	(1)	$n(11) = \frac{0.72}{47.9} = 0.015$	(1)	
	(ii)	n(Cl) = (2.85 - 0.72) = 0.06 35.5	(1)	
	(iii)	0.015: 0.06 = 1:4 empirical formula of A is TiCL		
		Allow ecf on answers to (i) and/or (ii).	(1)	
	(iv)	Ti + $2Cl_2 \rightarrow TiCl_4$ Allow ecf on answers to (iii).	(1)	[4]
(e)	sim me	alent/not ionic ple molecular or ntion of weak intermolecular forces or ak van der Waals's forces between molecules	(1) (1)	[2]
	wea	ik van der vvaals's forces between molecules	(5,000.5) Testinos ao es	00,000
			[Total:	: 14 max]
Q7.				
1	(a)	fewer electrons in Cl_2 than in Br_2 (1) smaller van der Waals' forces in Cl_2 or stronger van der Waals' force	es in Br ₂ (1)	[2]
	(b)	CO has a permanent dipole or N ₂ does not (1) permanent dipole-permanent dipole interactions are stronger the dipoles (1)	an those from	induced

penalise any groups of 3 or 4 electrons that are circled

[3]

(d) CO and HCN both have a dipole or N_2 does not have a dipole (1)

[1]

Q8.

(c) (i) 'dot-and-cross' diagram (1)

(ii)

(iii) minimum is

allow bond angle around N atom between 109° and 104° (1)

[4]

[1]

(d)
$$-2(1)$$

Q9.

(f) (i) both have very similar/same van der Waals' forces

(1)

(ii) CH₃F has permanent dipole

(1) [2]

Q10.

(f) (i)

(1)

(ii) 180°

(1) [2]

Q11.

(c) (i) around the N atom there is only one lone pair around the S atom there are two lone pairs

both (1)

(ii) angle (a) or sulfur - no mark for this

because two lone pairs repel more than one lone pair **or** lone pair-lone pair repulsions are stronger than lone pair-bond pair repulsions

(1) [2]

Q12.

(d) (i) hydrogen bonds

(1)

(ii) lone pair on O atom of C2H5OH

(1)

correct dipole O⁸-H⁸⁺ on bond in one molecule of ethanol

(1)

hydrogen bond shown between lone pair of an O atom and a hydrogen atom, i.e.

(1) [4]

Q13.

1 (a) (i)

S atom has 6 and C atom has 4 electrons

(1)

S=C double bonds (4 electrons) clearly shown

(1)

(ii) linear and 180°

(1) [3]

Q14.

$$\begin{bmatrix} x & x & x \\ x & x & x \end{bmatrix}^{2+} \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots \end{bmatrix}^{2-} (i)$$

Q15.

1	(a)	ionic ⁻	(1)	
		Na ⁺ and C <i>T</i>	(1)	
		arranged in cubic lattice (diagram required)		
		Na CI Na CI	(1)	
		each na^+ ion surrounded by six $C\Gamma$ ions or each $C\Gamma$ ion surrounded by six Na^+ ions may be in diagram or stated in words	(1) [4]	ľ
	(b)	in the solid, the ions cannot move	(1)	
		in the melt, the ions move or carry the charge/current	(1) [2]	Ĺ
Q16.				
(a)				
	55.	EC 25.		
	sulphu	r atom has 6 /carbon atom has 4 electrons	(1)	
	S=C do	ouble bonds (4 electrons) clearly shown	(1)	[2]
(b)	linear		(1)	
	180°		(1)	[21

Q17.

1 (a)

spherical (1)

larger spherical (1)

double lobes along the x-axis (1)

[3]

(b) (i) attraction between bonding electrons and nuclei (1) attraction is electrostatic

(1)

(ii) H₂ s-s overlap clearly shown must not be normal dot/cross diagram

(1)

HCl s-p overlap clearly shown

(c) (i) bonding electrons are unequally shared or

overlap must involve s and p orbitals [4] (1)

(1)

the molecule has a dipole/ δ + and δ - ends to molecule (ii) the H and C1 atoms have different electronegativities

or chlorine is more electronegative than hydrogen

(1)

[2]

(1)

[4]

between them

- (e) (i) 460 K Al₂Cl₆
 - 1150 K $AiCl_3$ (1)
 - (ii) correct dot-and-cross diagram for AIC l₃ (1)
 - (iii) correct displayed structure for Al_2Cl_6 (1)

two correct co-ordinate bonds (1)

[5]

(1)

Q19.

- 2 (a) (i) H-C-H 117 to 120° (1) C=C=O 180° (1)
 - (ii) molecule contains both ketone and alkene (1) [3]
 - (b) (i) $C_2H_2O + 2O_2 \rightarrow 2CO_2 + H_2O$ (1)

or $n(C_2H_2O) = \frac{42}{3.5} = 0.0833 (1)$ $n(CO_2) = 2 \times 0.083 = 0.0166 (1)$ vol. of $CO_2 = 0.0166 \times 24 = 4.0 \text{ dm}^3 (1)$ allow e.c.f. on wrong eqn. in **(b)(i)** penalise significant figure error

[4]

Q20.

Q21.

(b) (i) giant lattice (may be in diagram) (1) with strong ionic bonding (1)

(ii) ionic (1)

(iii) -1 (1)

(iv) ... + - ...

: Na: x.H ...

correct numbers of electrons (1)

correct charges

(1)

(v)

compound	MgH ₂	AlH ₃	PH ₃	H₂S
oxidation number of element in the hydride	+2	+3	-3	-2

correct oxidation nos. for MgH_2 and AIH_3 (1) correct oxidation nos. for PH_3 and H_2S (1) [8]

Q22.

1 (a)

number of bond pairs	number of lone pairs	shape of molecule	formula of a molecule with this shape
3	0	trigonal planar	BH ₃
4	0	tetrahedral	CH ₄ allow other Group IV hydrides
3	1	pyramidal or trigonal pyramidal	NH ₃ allow other Group V hydrides
2	2	non-linear or bent or V-shaped	H₂O allow other Group VI hydrides

1 mark for each correct row

(3 × 1) [3]

(b) (i)

(1)

(ii) octahedral or square-based bipyramid

(1)

(iii) 90°

(1) [3]

[Total: 6]

Q23.

1 (a)

- **both** 'dot-and-cross' diagrams correct NH₃ is pyramidal **or** trigonal pyramidal
- (1) (1) (1) [3]

- (b) (i) nitrogen and hydrogen have different electronegativities
- (1)

N-H bond has a dipole **or**N⁸⁻—H⁸⁺ **or**bonding pair is unequally shared

CH4 is tetrahedral

(1)

(ii) molecule is not symmetrical or dipoles do not cancel out

(1)

(iii) NH₃ has higher boiling point than expected from *M*_r value or has higher boiling point than methane or NH₃ is soluble in water (1) [4]

(c) three covalent N–H bonds (1) one co-ordinate (dative covalent) N–H bond (1) one ionic bond between NH₄⁺ and C*l*⁻ (1) [3]