Question Number	Mark Scheme Details	Part Mark
2 (a)	C2H4 + H20 CLHSOTH	
:	-1416 - 1367 SH = (2 442er Jaw) -1	[2]
(b) (i)		1-7
(17)	under standard conditions Hoos (24504) are liquids(1)	
Gn	C2 H5 07+ + 302 → 2 CO2 + 3 H20 (1)	4
(6)	$C_{2}H_{5}CTH + 50_{L} \rightarrow 2CO_{2} + 3H_{2}O(1)$ $C_{2}H_{5} \rightarrow 0$ $H_{1}H_{1}G$ $C_{2}H_{5} \rightarrow 0$ $H_{1}H_{1}G$ $G_{1}H_{2}G$ $G_{2}H_{5} \rightarrow 0$ $H_{2}G$ $G_{2}H_{5} \rightarrow 0$ $H_{3}G$ $G_{2}H_{5} \rightarrow 0$ $H_{4}G$ $G_{2}H_{5} \rightarrow 0$ $G_{3}H_{5} \rightarrow 0$ $G_{4}H_{5} \rightarrow 0$ $G_{5}H_{5} \rightarrow 0$ $G_{5}H_{5} \rightarrow 0$ $G_{5}H_{5} \rightarrow 0$ $G_{7}H_{5} \rightarrow 0$ $G_{7}H$	2
	* Some energy reference reprised.	3

(d)
$$C_2H_2(g) + {}^5/_2O_2(g) \rightarrow 2CO_2(g) + H_2O(g)$$

bonds broken: $2(H-C)$ 2 x 410 = 820
 $C \equiv C$ 840 = 840
 ${}^5/_2(O=O)$ ${}^5/_2$ x 496 = $\frac{1240}{2900}$ kJ mol⁻¹ (1)
bonds made: $4(C=O)$ 4 x 740 = 2960
 $2(O-H)$ 2 x 460 = $\frac{920}{3880}$ kJ mol⁻¹ (1)
 $\Delta H_{comb} = -3880 + 2900 = -980$ kJ mol⁻¹ (1)
allow e.c.f. on incorrect bonds made/broken [3]

(e)	(i)	the	e enthalpy/energy change when one mole of a substance	(1)	
		or	burned in an excess of air/oxygen completely combusted der standard conditions	(1)	
	(ii)		Iculation in (d) includes $H_2O(g)$ whereas ΔH_{comb} involves $H_2O(I)$ average bond energy terms are used in the <i>Data Booklet</i>	(1)	[3]
Q:3	3				
1	(a)	fror	halpy change when 1 mol of a compound is formed (1) m its elements (1) heir standard states under standard conditions (1)		[3]
	(b)	(i)	$N_2H_4(I) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$ $\Delta H_1^o/kJ \text{ mol}^{-1} +50.6 -241.8$ $\Delta H_1^o/kJ \text{ mol}^{-1} +50.6 (1)$ = -534.2 kJ mol $^{-1}$ (1)		
		(ii)	E _a is too high (1)		
		(iii)	products are H_2O and N_2 which are harmless/non toxic or are already present in the atmosphere (1)		[4]
Q:4	ļ				
2	(a)	(i)	new graph has lower maximum (1) maximum is to the right of previous maximum (1)		
		(ii)	\mathbf{H} is at E_a (1)		[3]
	(b)		minimum amount of energy molecules must have or energy required (1) order for the reaction to take place (1)		[2]
Q:5 (d)	(i)	C ₂ eq H co	Imbustion $H_2(g) + {}^5I_2O_2(g) \rightarrow 2CO_2(g) + H_2O(I)$ or justion must be for the combustion of one mole of C_2H_2 $O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O$	(1) (1)	
		no	mark for state symbols here	(1)	

(ii) let ${f Z}$ be $\Delta {\cal H}^e{}_f$ of $C_2 H_2$

$$C_2H_2 + {}^5/_2O_2 \rightarrow 2CO_2 + H_2O$$
 $\Delta H^{\rm e}_{\rm f}$ **Z** 0 2(-394) -286 $\Delta H^{\rm e}_{\rm c} = -1300 = 2(-394) + (-286) - {\bf Z}$ (1) whence ${\bf Z} = 2(-394) + (-286) - (-1300)$ = +226 kJ mol⁻¹ value (1) sign allow ecf on wrong equation (6)

Q:6

(b) (i)
$$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$$
 $\Delta H^0_1/kJ \text{ mol}^{-1}$ -394 0 -201 -242

$$\Delta H^{e}_{reaction} = -201 + (-242) - (-394)$$
 (1)
-49 kJ mol⁻¹ (1)
correct sign (1)

2 (a)
$$CH_3OH(I) + {}^3/_2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$$
 (1) the enthalpy change/heat change/heat evolved when one mole of CH_3OH (1) is completely burned or is burned in an excess of air/oxygen (1)

(b)
$$\Delta H^{\circ}_{\text{reaction}} = -283 + 2(-286) - (-726)$$
 (1)
= -129 kJ mol⁻¹ (1)
correct sign (1)

(b)
$$2CH_3OH(I) \rightarrow CH_3OCH_3(g) + H_2O(I)$$

 $\Delta H^{\rm e}_{\rm f}/{\rm kJ~mol}^{-1} 2(-239) -184 -286$
 $\Delta H^{\rm e}_{\rm reaction} = -184 + (-286) - 2(-239) (1)$
 $= +8~{\rm kJ~mol}^{-1} (1)$
correct sign

Q:9

(c) let ΔH_f^{θ} for NO be $y \text{ kJ mol}^{-1}$

 $4NH_3(g) + 5O_2(g)$

$$\Delta H_{\rm f}^{\, o} \ 4 \times (-46.0)$$
 4y 6 × (-242)

 $4NO(g) + 6H_2O(g)$

(1)

 \rightleftharpoons

$$\Delta H^{e}_{reaction} = 4y + [6 \times (-242)] - [4 \times (-46.0)]$$

= 4y - 1452 + 184

$$\Delta H_{\text{reaction}}^{\text{e}}$$
 is -906 kJmol^{-1} so $4y = -906 + 1452 - 184 = 362$ (1) whence $y = \Delta H_{\text{f}}^{\text{e}}$ for NO = $+90.5 \text{ kJ mol}^{-1}$ + sign is required (1)

1 (a) (i)

(b) (i)
$$CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$$
 (1)

is burnt in an excess of oxygen/air

or is completely combusted

Q:11

(e)
$$H_{20} + Cc(NH_{2})_{2} \rightarrow 2NH_{3} + CO_{2}$$

 $-287 + (-322.5) \rightarrow -162 - 414.5$ (i)
 $-607.5 \rightarrow -576.5$
 $\Delta H = 31 \text{ fz J mol}^{-1}$ (7)

3 (a) (i) energy/enthalpy change when 1 mol of a compound is formed from its elements (1) at 25°C and 1 atm (1) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$ (1) (b) (i) $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$ (1) (ii) heat released = $mc\Delta T$ (1) = 200 x 4.2 x 12.2 = 10.25 kJ (1) (iii) $\Delta H_{\text{reacn}} = 40.1 \text{ x } (-10.25) = -411 \text{ kJ mol}^{-1} \text{ sign necessary}$ for ecf, $\Delta H_{\text{reacn}} = 40.1 \text{ x [answer to (b)(ii)]}$ (1) [4] (c) The enthalpy (energy) change for converting reactants into (i) products (1) is the same regardless of the route taken (1) $2H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g) \Delta H = -411$ (ii) ΔH^{\oplus}_{f} 2 x (-286) $\Delta H_{\text{reacn}} = x - 2(-286) = -411$ (1) $x = -411 + 2(-286) = -983 \text{ kJ mol}^{-1}$ (1) sign necessary for ecf, x = ans. to (b)(iii) + (-572)[4] 40.1 g of Ca give 24000 cm3 of H2 (d) (1) 1 g of Ca gives $\frac{24000}{40.1}$ = 598.5 cm³ units needed allow 40 g of Ca giving 600 cm3 **(1)** [2] Q: 13 (d) (i) $\Delta H_{\text{reacn}} = \Delta H$ for bonds broken $-\Delta H$ for bonds made (1)

(ii)
$$2H-I \rightarrow H-H+I-I$$

 2×299 436 151 values (1)
 $\Delta H = 2 \times 299 - (436 + 151)$
 $= + 11 \text{ kJ mol}^{-1}$ (1) [3]

2 (a)

sulphur atom has 6 /carbon atom has 4 electrons (1)

S=C double bonds (4 electrons) clearly shown (1) [2]

(b) linear (1)

 180° (1) [2]

(c) the enthalpy change when 1 mol of a compound (1) is formed from its elements in their standard states (1)

under standard conditions (may be quoted) (1) [3]

(d) $C + O_2 \rightarrow CO_2$ -395

 $S + O_2 \rightarrow SO_2$ -298

 $CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$ -1110

 $C + 2S \rightarrow CS_2 \quad \Delta H = -395 + 2(-298) - (-1110)$

 $= +119 \text{ kJ mol}^{-1}$

cycle (1) use of 2 for S/SO_2 (1) answer (1) [3]

Q: 15

(d) enthalpy change when 1 mol of a substance (1)

is burnt in an excess of oxygen/air
or undergoes complete combustion
under standard conditions
(1)

(e) (i) heat released = m c δ T = 200 x 4.18 x 27.5 (1)

= 22990 J = 23.0 kJ

(If candidate uses 4.2 answer is 23.1 kJ.) (1)

(ii) 23.0 kJ produced from 0.47 g

2059 kJ produced from $\frac{0.47 \times 2059}{23.0}$ g (1)

= 42.08g

(Use of 4.2 gives 41.89 g.)

allow ecf from (i) (1)

(e)
$$\Delta H_f^e = 2(-393.7) + 2(-285.9) - (-1411)$$

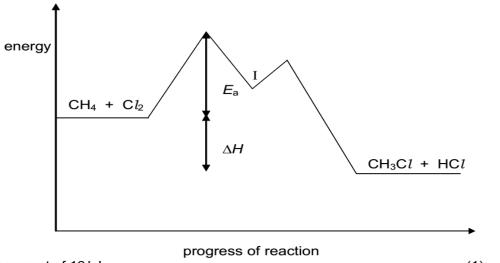
= + 51.8 kJ mol⁻¹(units given in qu.) (3)
penalise errors: no 2 for -393.7
no 2 for -285.9
wrong sign for -(-1411) [3]

Q: 17

(c) (i) enthalpy change when
1 mol of a compound is formed (1)
from its elements (1)
in their standard states under standard conditions (1)

(ii) C + O₂
$$\rightarrow$$
 CO₂ -395 kJ mol^{-1}
H₂ + ½O₂ \rightarrow H₂O -286 kJ mol^{-1}
C₂H₂O + 2O₂ \rightarrow 2CO₂ + H₂O $-1028 \text{ kJ mol}^{-1}$
2C + H₂ + ½O₂ \rightarrow C₂H₂O ΔH = 2(-395) + (-286) -(-1028)
= -48 kJ mol⁻¹
correct cycle (1) use of 2 for C/CO₂ (1) answer (1) [6]

Q: 18


3 (a) (i)
$$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$$

 $\Delta H_f^{\circ} -75 = 0 = -82 = -92$ (1)
 $\Delta H_{\text{reaction}}^{\circ} = -82 + (-92) - (-75)$
 $= -99 \text{ kJ mol}^{-1}$ (1)

(ii)
$$CH_4 + I_2 \rightarrow CH_3I + HI$$
 broken $C-H$ $I-I$ made $C-I$ $H-I$ 410 151 240 299 (1)

$$\Delta H^{\circ}_{\text{reaction}} = -240 + (-299) + 410 + 151$$

= $+22 \text{ kJ mol}^{-1}$ (1)

(iii) activation energy is too great (1) [5]

(c)

correct placement of 16 kJ

correct placement of –99 kJ (allow ecf on wrong calculation in (a) (i))

intermediate clearly shown at I

correct 'double peak' shape

second peak lower than first

(1)

(1)

(1)

(1)

(5)

Q:19

(d) enthalpy change when 1 mol of a substance (1)

is burnt in an excess of oxygen/air under standard conditions or is completely combusted under standard conditions (1)

[2]

- (e) (i) heat released = m c δ T = 200 x 4.18 x 27.5 (1)
 - = 22990 J = 23.0 kJ (1)
 - (ii) 23.0 kJ produced from 0.47 g of E

2059 kJ produced from
$$\frac{0.47 \times 2059}{23.0}$$
 g of **E** (1)

= 42.08 g of E (1)

allow ecf in (i) or (ii) on candidate's expressions

[4]

[1]

(f) $C_3H_6 = 42$

E is C₃H₆

for ecf, E must be unsaturated and be no larger than C₅(1)

(a) the	e overall enthalpy change/energy change/ ΔH for a reaction	(1)
is	independent of the number of steps involved	(1)
(b) (i)	$K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$	(1)
(ii)	heat produced= m × c × δ T = 30.0 × 4.18 × 5.2 = 652.08 J per 0.0200 mol of K ₂ CO ₃	(1)
(iii)	$0.020 \text{ mol } K_2CO_3 \equiv 652.08 \text{ J}$	
	1 mol $K_2CO_3 = 652.08 \times 1 = 32604 \text{ J}$ 0.0200	
	enthalpy change = -32.60 kJmol ⁻¹	(1)
(iv)	to prevent the formation of KHCO ₃ or to ensure complete neutralisation	(1)
(c) (i)	$KHCO_3 + HCl \rightarrow KCl + H_2O + CO_2$	(1)
(ii)	heat absorbed= m × c × δ T = 30.0 × 4.18 × 3.7 = 463.98 J per 0.0200 mol of KHCO ₃	(1)
(iii)	$0.020 \text{ mol KHCO}_3 \equiv 463.98 \text{ J}$	
	1 mol KHCO ₃ = $\frac{463.98 \times 1}{0.0200}$ = 23199 J	
	enthalpy change = +23.20 kJmol ⁻¹	(1)
	is is in product (b) (i) (ii) (iii) (iv)	(iii) 0.020 mol K ₂ CO ₃ = 652.08 J 1 mol K ₂ CO ₃ = 652.08 × 1 = 32604 J 0.0200 enthalpy change = $-32.60 \text{ kJmol}^{-1}$ (iv) to prevent the formation of KHCO ₃ or to ensure complete neutralisation (c) (i) KHCO ₃ + HC l \rightarrow KC l + H ₂ O + CO ₂ (ii) heat absorbed = m × c × δ T = 30.0 × 4.18 × 3.7 = 463.98 J per 0.0200 mol of KHCO ₃ (iii) 0.020 mol KHCO ₃ = 463.98 J 1 mol KHCO ₃ = 463.98 × 1 0.0200

(2)

(d) $\Delta H = 2 \times (+23.20) - (-32.60) = +79.00 \text{ kJ mol}^{-1}$

(d) (i)
$$m = \frac{pVM_r}{RT} = \frac{1.01 \times 10^5 \times 125 \times 10^{-6} \times 44}{8.31 \times 293}$$
 g (1)

$$= 0.228147345 g$$

= 0.23 g (1)

(ii) heat released = m c
$$\delta$$
 T = 200 × 4.18 × 13.8 J (1)
= 11536.8 J = 11.5 kJ (1)

(iii) 0.23 g of propane produce 11.5 kJ
44 g of propane produce
$$\frac{11.5 \times 44}{0.23}$$
 kJ
= 2200 kJ mol⁻¹ (1)

- (c) enthalpy change when 1 mol of a substance is burnt in an excess of oxygen/air under standard conditions
 or is completely combusted under standard conditions (1) [2]
- (d) working must be shown

(i) heat released = m c
$$\delta$$
T = 250 × 4.18 × 34.6 (1) = 36157 J = 36.2 kJ (1)

(ii)
$$M_r$$
 of $C_{14}H_{30} = 198$ (1)
mass of $C_{14}H_{30} = 1.00 \times 0.763 = 0.763$ g (1)
 0.763 g of $C_{14}H_{30}$ produce 36.2 kJ
 198 g of $C_{14}H_{30}$ produce $\frac{36.2 \times 198}{0.763}$
 $= 9394$ kJ mol⁻¹ (1) [5]