	_		
•	٦.	4	

6	Α	compound, A, has the following composition by mass.	Examir Use
		C, 66.7%; H, 11.1%; O, 22.2%.	
	lt l	nas an $M_{\rm r}$ of 72.	
	(a	Calculate the molecular formula of A.	
		[2]	
Q2.			
2		npounds of phosphorus have many uses in everyday life, e.g. fertilisers, matches and in wa eners.	ter
	(a)	State the full electronic configuration of phosphorus.	
			[1]
	(b)	Phosphoric acid, H_3PO_4 , is used in the manufacture of phosphate fertilisers.	
		Deduce the oxidation number of phosphorus in ${\rm H_3PO_4}$.	
			[1]
	(c)	The salt sodium phosphate, Na ₃ PO ₄ , is a water-softening agent.	
		(i) Write the equation for the complete neutralisation of phosphoric acid with aqueo sodium hydroxide.	us

	dium phosphate was prepared from 50.0 cm 3 of 0.500 mol dm $^{-3}$ $\rm H_3PO_4$ and an excess of ueous sodium hydroxide.
(ii)	How many moles of H ₃ PO ₄ were used?
(iii)	Use your equation in (c)(i) to calculate how many moles of sodium hydroxide are required.
(d) Ph	[3] osphorus sulphide, $P_4 S_3$, is used in small amounts in the tip of a match. On striking a
` ma	tch, this compound burns.
(i)	Construct an equation for this reaction.
(ii)	Both oxides formed in (i) dissolve in water to give acidic solutions. Construct an equation for the reaction of each oxide with water.
	741
	[4]
	[Total : 9]
Q3.	

	c) 1.20 dm ³ of ammonia gas were dissolved in water to form 200 cm ³ of aqueous alkali at room temperature and pressure.						
	(i)	Use the ${\it Data\ Booklet}$ to calculate how many moles of ${\rm NH_3}(g)$ were dissolved.					
J	(ii)	Write the equation for the neutralisation of aqueous ammonia by dilute sulphuric acid.	U.				
(iii)		alculate the ∨olume of 0.50 mol dm ⁻³ sulphuric acid that is required to neutralise e 200 cm ³ of aqueous ammonia.					
		[3]					

Q4.

	(i)	Write a balanced equation for the complete combustion of $\mathrm{H}_2\mathrm{S}$.
	(ii)	What is the change in the oxidation number of sulphur in this reaction?
		from to
	(iii)	What volume of oxygen, measured at room temperature and pressure, is required for the complete combustion of 8.65 g of $\rm H_2S$? Give your answer to two decimal places.
		[5]
		salt is a pale green crystalline solid which is soluble in water. Mohr's salt is a 'double hich contains
		two cations, one of which is Fe ²⁺ ,
		one anion which is SO_4^{2-} ,
		and water of crystallisation.
(;	S	ne identity of the second cation was determined by the following test. olid Mohr's salt was heated with solid sodium hydroxide and a colourless gas was olved.The gas readily dissolved in water giving an alkaline solution.
	(i	What is the gas?
	(ii) What is the formula of the second cation identified by this test?
	(ii	What is the formula of the second cation identified by this test?
	(iii	
	700	

(b)	The identity of the anion present in Mohr's salt was confirmed by adding dilute hydrochloric acid followed by aqueous barium chloride to an aqueous solution of Mohr's salt. A white precipitate was formed.	
	Suggest the identity of the white precipitate.	
	[1]	
(c)	When a double salt such as Mohr's salt is made, the two individual salts are mixed together in a 1:1 molar ratio, dissolved in water and the solution crystallised.	
	(i) Give the formula of each of the two salts that would be mixed to make the double salt, Mohr's salt.	
	salt 1	
	salt 2	
(ii)	Calculate the relative formula mass of each of the salts present in Mohr's salt.	Exi
	salt 1	
	relative formula mass of salt 1	
	salt 2	
	Suit 2	
	relative formula mass of salt 2	
(iii) The crystals of the double salt contain water of crystallisation.	
	The relative formula mass of Mohr's salt is 392. Use your answers to (ii) to calculate	
	the number of moles of water of crystallisation present in one mole of Mohr's salt.	
	[6]	
	[Total: 10]	

Q6.

(c) In some countries, ethyne is manufactured from calcium carbide, CaC₂, which is produced by heating quicklime and coke together at 2300 K.

$$CaO + 3C \rightarrow CaC_2 + CO$$

When water is added to the ${\rm CaC}_2$, calcium hydroxide, ${\rm Ca(OH)}_2$, and ethyne, ${\rm C_2H_2}$, are produced.

(i) Construct a balanced equation for the formation of ethyne from calcium carbide.

(ii) Use this equation and your answer to part (b) to calculate the mass of CaC₂ which will react with an excess of water to produce enough ethyne to fill 100 cylinders of the gas.

[3]

Q7.

(b) When CH_2Cl_2 is heated under reflux with an excess of NaOH(aq), a compound ${\bf W}$ is formed.

W has the following composition by mass: C, 40.0%; H, 6.7%; O, 53.3%.

Use this information and the *Data Booklet* to show that the empirical formula of \mathbf{W} is $\mathrm{CH_2O}$.

[2]

Q8.

Tita	Titanium also reacts with chlorine.							
(d)	When an excess of chlorine was reacted with 0.72 g of titanium, 2.85 g of a chloride ${\bf A}$ was formed.							
	(i)	Calculate the amount, in moles, of titanium used.						
	(ii)	Calculate the amount, in moles, of chlorine atoms that reacted.						
	(iii)	Hence, determine the empirical formula of A.						
	(iv)	Construct a balanced equation for the reaction between titanium and chlorine.						
		[4]						
C	An organic compound, E , has the following composition by mass: C, 48.7%; H, 8.1%; O, 43.2%.							
(a) (Calculate the empirical formula of E .						

Q9.

[2]

(h)	When vaporised in a suitable apparatus, 0.130 g of E occupied a volume of 58.0 cm ³ at
101	when vaponised in a suitable apparatus, or roog of 2 occupied a volume of occupient at
	127 °C and 1.00 × 10 ⁵ Nm ⁻² .

(i) Use the expression $pV = \frac{mRT}{M_r}$ to calculate M_r of **E**, where m is the mass of **E**.

(ii) Hence calculate the molecular formula of E.

[4]

Q10.

A third polycarboxylic acid present in unripe fruit is a colourless crystalline solid, \mathbf{W} , which has the following composition by mass: C, 35.8%; H, 4.5%; O, 59.7%.

(d) (i) Show by calculation that the empirical formula of ${\bf W}$ is ${\bf C_4H_6O_5}$.

(ii) The M_r of ${\bf W}$ is 134. Use this value to determine the molecular formula of ${\bf W}$.

[3]

Q11.

(c)	In a redox reaction,	0.83g of	lithium	reacted	with	water	to form	$0.50dm^3$	of	aqueous
	lithium hydroxide.									

$$2\text{Li(s)} + 2\text{H}_2\text{O(I)} \rightarrow 2\text{LiOH(aq)} + \text{H}_2(g)$$

(i) Calculate the amount, in moles, of lithium that reacted.

- (ii) Calculate the volume of hydrogen produced at room temperature and pressure.
- (iii) Calculate the concentration, in $mol\,dm^{-3}$, of the LiOH(aq) formed.

[5]

Q12.

1	c)	In this	section.	give your	answers	to one	decimal	place.
	~,			9	411011010		a o o i i i i a i	

The flight path from Beijing to Paris is approximately 8195km.

A typical intercontinental jet airliner burns 10.8kg of kerosene for each kilometre covered.

(i) Calculate the mass, in tonnes, of $\rm C_{14}H_{30}$ burnt on a flight from Beijing to Paris. [1 tonne = 1 000 kg]

(ii) Use your equation in (b) to calculate the mass, in tonnes, of CO₂ produced during this flight.

[4]

Q13.

In an experiment to determine $K_{\rm c}$ a student placed together in a conical flask 0.10 mol of ethanoic acid, 0.10 mol of an alcohol ROH, and 0.005 mol of hydrogen chloride catalyst.

The flask was sealed and kept at 25 °C for seven days.

After this time, the student titrated all of the contents of the flask with 2.00 mol dm⁻³ NaOH using phenolphthalein indicator.

At the end-point, 22.5 cm3 of NaOH had been used.

(b)	(i)	Calculate the amount, in moles, of NaOH used in the titration.	
	(ii)	What amount, in moles, of this NaOH reacted with the hydrogen chloride?	
	(iii)	Write a balanced equation for the reaction between ethanoic acid and NaOH.	
	(iv)	Hence calculate the amount, in moles, of NaOH that reacted with the ethanoic acid.	
Q14.		[4]	
1	sti	ethanoic acid, HCO ₂ H, was formerly known as formic acid because it is present in the ng of ants and the Latin name for ant is <i>formica</i> . It was first isolated in 1671 by John Ray no collected a large number of dead ants and extracted the acid from them by distillation.	
	ln	this question, you should give all numerical answers to <u>two</u> significant figures.	
	At	room temperature, pure methanoic acid is a liquid which is completely soluble in water.	
	W	hen we are stung by a 'typical' ant a solution of methanoic acid, A, is injected into our	

Solution A contains 50% by volume of pure methanoic acid.

A 'typical' ant contains $7.5 \times 10^{-6} \, dm^3$ of solution **A**.

skin.

a)	(i)	Calculate the ∨olume, in cm ³ , of solution A in one ant.	
	(ii)	$volume =cm^3 \\$ Use your answer to (i) to calculate the volume, in cm 3 , of pure methanoic acid in one ant.	
		∨olume =cm ³	
	(ii	i) Use your answer to (ii) to calculate how many ants would have to be distilled to produce 1 dm ³ of pure methanoic acid.	0
		number =[3	3]

When we are stung by an ant, the amount of solution A injected is 80% of the total amount of solution A present in one ant.

For Ex amir. Use

The density of pure methanoic acid is 1.2 g cm⁻³.

(b) (i) Calculate the volume, in cm³, of pure methanoic acid injected in one ant sting.

volume = cm³

(ii) Use your answer to (i) to calculate the mass of methanoic acid present in one ant sting.

mass = g [3]

Bees also sting us by using methanoic acid. One simple treatment for ant or bee stings is to use sodium hydrogencarbonate, $NaHCO_3$.

(c) (i) Construct a balanced equation for the reaction between methanoic acid and sodium hydrogencarbonate.

(ii) In a typical bee sting, the mass of methanoic acid injected is 5.4×10^{-3} g. Calculate the mass of NaHCO₃ needed to neutralise one bee sting.

mass = g [3]

[Total: 9]

Q15.

2 Ammonium sulfate, (NH₄)₂SO₄, is widely used as a fertiliser.

In order to determine its percentage purity, a sample of ammonium sulfate fertiliser was analysed by reacting a known amount with an excess of NaOH(aq) and then titrating the unreacted NaOH with dilute HC1.

(a) Ammonium sulfate reacts with NaOH in a 1:2 ratio.

Complete and balance the equation for this reaction.

$$(NH_4)_2SO_4 + 2NaOH \rightarrowNH_3 + +$$
 [2]

(b) A 5.00 g sample of a fertiliser containing $(NH_4)_2SO_4$ was warmed with 50.0 cm³ (an excess) of 2.00 mol dm⁻³ NaOH.

When all of the ammonia had been driven off, the solution was cooled.

The remaining NaOH was then titrated with 1.00 mol dm⁻³ HC1 and 31.2 cm³ were required for neutralisation.

(i) Write a balanced equation for the reaction between NaOH and HC1.

(ii) Calculate the amount, in moles, of HC1 in 31.2 cm3 of 1.00 mol dm3 HC1.

(iv) Use your answers to (i), (ii) and (iii) to calculate the amount, in moles, of NaOH used up in the reaction with (NH₄)₂SO₄.

(v)	Use your answer to (iv) and the equation in (a) to calculate the amount, in moles, of $(NH_4)_2SO_4$ that reacted with NaOH.	Exa
(vi)	Use your answer to (v) to calculate the mass of $(NH_4)_2SO_4$ that reacted with NaOH.	
(vii	i) Hence, calculate the percentage purity of the ammonium sulfate fertiliser.	
	ו	7]
	[Total:	9]
Q16.		
(e)	The food additive E330 is another organic compound which occurs naturally in fruit. E330 has the following composition by mass: C, 37.5 %; H, 4.17 %; O, 58.3 %. Calculate the empirical formula of E330.	

Q17.

2	Wa	ashing soda is hydrated sodium carbonate, Na ₂ CO _{3*} xH ₂ O.										
	A student wished to determine the \lor alue of x by carrying out a titration, with the fresults.											
		5.13 g of washing soda crystals were dissolved in water and the solution was made up to 250 cm³ in a standard volumetric flask.										
		25.0 cm³ of this solution reacted exactly with 35.8 cm³ of 0.100 mol dm⁻³ hydrochloric acid and carbon dioxide was produced.										
(a)	(i)	Write a balanced equation for the reaction between Na ₂ CO ₃ and HC1.										
	(ii)	Calculate the amount, in moles, of HC1 in the 35.8 cm³ of solution used in the titration	on									
	(iii)	Use your answers to (i) and (ii) to calculate the amount, in moles, of Na_2CO_3 in t25.0 cm 3 of solution used in the titration.	h									
iv)		e your answer to (iii) to calculate the amount, in moles, of Na₂CO₃ in the 250 cm³ solution in the standard ∨olumetric flask.										

	(v) Hence calculate the mass of Na_2CO_3 present in 5.13 g of washing soda crystals.
	[6]
(b) Use your calculations in (a) to determine the value of x in Na ₂ CO ₃ .xH ₂ O.
·	
	[2]
	[Total: 8]
Q18.	
4	A semante of a fartillian was known to contain a semantic and the ALLIN CO. and and a semantic and the seman
1	A sample of a fertiliser was known to contain ammonium sulfate, (NH ₄) ₂ SO ₄ , and sand only.
	A 2.96g sample of the solid fertiliser was heated with 40.0 cm³ of NaOH(aq), an excess, and all of the ammonia produced was boiled away.
	After cooling, the remaining NaOH(aq) was exactly neutralised by 29.5 cm³ of 2.00 mol dm ⁻³ HC <i>1</i> .
	In a separate experiment, 40.0 cm³ of the original NaOH(aq) was exactly neutralised by 39.2 cm³ of the 2.00 mol dm¬³ HC1.

Ex

		parate experiment, 40.0 cm ³ of the original NaOH(aq) was exactly neutralised by ³ of the 2.00 mol dm ⁻³ HC <i>1</i> .										
(a	i) (i)	Write balanced equations for the following reactions.										
		NaOH with HC1										
		(NH ₄) ₂ SO ₄ with NaOH										
	(ii)	Calculate the amount, in moles, of NaOH present in the 40.0 cm ³ of the original NaOH(aq) that was neutralised by 39.2 cm ³ of 2.00 mol dm ⁻³ HC <i>I</i> .										
(iii)		ulate the amount, in moles, of NaOH present in the 40.0 cm $^{\rm 3}$ of NaOH(aq) that hined after boiling the (NH $_4$) $_2$ SO $_4$.										
(iv)		your answers to (ii) and (iii) to calculate the amount, in moles, of NaOH that										
	reac	ted with the (NH ₄) ₂ SO ₄ .										

	(v)	Use your answers to (i) and (iv) to calculate the amount, in moles, of $(NH_4)_2SO_4$ that reacted with the NaOH.									
((vi)	Hence calculate the mass of $(NH_4)_2SO_4$ that reacted.									
(vii)	Use your answer to (vi) to calculate the percentage, by mass, of $(NH_4)_2SO_4$ present in the fertiliser. Write your answer to a suitable number of significant figures.									
		[9]									
b)		uncontrolled use of nitrogenous fertilisers can cause environmental damage to lakes streams. This is known as <i>eutrophication</i> .									
		at are the processes that occur when excessi∨e amounts of nitrogenous fertilisers get lakes and streams?									
		[2]									
	77.17	[2]									
c)	Not Sta	ge quantities of ammonia are manufactured by the Haber process. all of this ammonia is used to make fertilisers. te one large-scale use for ammonia, other than in the production of nitrogenous lisers.									
		[1]									

Fi Exam U.

[Total: 12]

Q19.

2 Chile saltpetre is a mineral found in Chile and Peru, and which mainly consists of sodium nitrate, NaNO₃. The mineral is purified to concentrate the NaNO₃ which is used as a fertiliser and in some fireworks.

Fo Exami Us

In order to find the purity of a sample of sodium nitrate, the compound is heated in NaOH(aq) with Devarda's alloy which contains aluminium. This reduces the sodium nitrate to ammonia which is boiled off and then dissolved in acid.

$$3NaNO_2(aq) + 8Al(s) + 5NaOH(aq) + 18H_2O(l) \rightarrow 3NH_2(g) + 8NaAl(OH)_2(aq)$$

The ammonia gas produced is dissolved in an excess of H_2SO_4 of known concentration.

$$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$$

The amount of unreacted $\rm H_2SO_4$ is then determined by back-titration with NaOH of known concentration.

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

- (a) A 1.64 g sample of impure NaNO $_3$ was reacted with an excess of Devarda's alloy. The NH $_3$ produced was dissolved in 25.0 cm 3 of 1.00 mol dm $^{-3}$ H $_2$ SO $_4$. When all of the NH $_3$ had dissolved, the resulting solution was titrated with NaOH(aq). For neutralisation, 16.2 cm 3 of 2.00 mol dm $^{-3}$ NaOH were required.
 - (i) Calculate the amount, in moles, of H_2SO_4 present in the 25.0 cm³ of 1.00 mol dm⁻³ H_2SO_4 .
 - (ii) Calculate the amount, in moles, of NaOH present in 16.2 cm3 of 2.00 mol dm-3 NaOH.
 - (iii) Use your answer to (ii) to calculate the amount, in moles, of H₂SO₄ that reacted with 16.2 cm³ of 2.00 mol dm⁻³ NaOH.

	Jse your answers to (i) and (iii) to calculate the amount, in moles, eacted with the NH3.	of H ₂ SO ₄ that
(1)	v) Use your answer to (iv) to calculate the amount, in moles, of NH ₃ the H ₂ SO ₄ .	that reacted with
(v	vi) Use your answer to (v) to calculate the amount, in moles, of NaNO ₃ the Devarda's alloy.	that reacted with
(vi	ii) Hence calculate the mass of NaNO₃ that reacted.	
(vii	 Use your answer to (vii) to calculate the percentage by mass of N the impure sample. Write your answer to a suitable number of significant figures. 	IaNO₃ present in
	abo∨e reaction is an example of a redox reaction. at are the oxidation numbers of nitrogen in NaNO₃ and in NH₃?	[9]
	NH ₃	[1] [Total: 10]

Q20.

1	Most submarines travel under water using electrical power from batteries. The German
	engineer Helmut Walter designed a diesel engine that could be used to propel a submarine
	beneath the surface of the sea. Instead of taking air from above the surface of the sea,
	Walter's engine used hydrogen peroxide, H ₂ O ₂ , to provide oxygen for a conventional diesel
	engine.

Use

Hydrogen peroxide may be catalytically decomposed to give water and oxygen.

(ii) What is meant by the term *catalyst?*(iii) Construct a balanced equation for the decomposition of H₂O₂.

Diesel fuel may be considered to consist of the hydrocarbon $\rm C_{15}H_{32}$ which reacts completely with oxygen according to the following equation.

$$C_{15}H_{32} + 23O_2 \rightarrow 15CO_2 + 16H_2O$$

- (b) (i) To which homologous series does C₁₅H₃₂ belong?
 - (ii) Use the equation above and your answer to (a)(ii) to calculate the amount, in moles, of $\rm H_2O_2$, that will provide sufficient oxygen for the complete oxidation of one mole of $\rm C_{15}H_{32}$.

amount of H_2O_2 = mol

[3]

und	lerwa	arine equipped with a Walter engine used 212 tonnes of diesel fuel during an ater voyage. The submarine also carried concentrated aqueous H ₂ O ₂ . = 10 ⁶ g]	For Examiner's Use
(c)	(i)	Calculate the amount, in moles, of diesel fuel used during the underwater voyage.	
	(ii)	amount of diesel fuel =	
		mass of H ₂ O ₂ = tonnes [4]	
(d)	The	e exhaust products of the Walter engine were passed into the sea.	
	Wh	at would happen to them?	
		[1]	
		[Total: 11]	
Q21.			
1	from The	814, Sir Humphrey Davy and Michael Faraday collected samples of a flammable on the ground near Florence in Italy. By analysed A which they found to be a hydrocarbon. Further experiments were ided out to determine the molecular formula of A .	50 20 20
	(a)	What is meant by the term molecular formula?	
		3	
			[2]

Davy and Faraday deduced the formula of ${\bf A}$ by exploding it with an excess of oxygen and analysing the products of combustion.

(b) Complete and balance the following equation for the complete combustion of a hydrocarbon with the formula $C_x H_\nu$.

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow \dots + \dots$$
 [2]

(c) When 10 cm³ of A was mixed at room temperature with 50 cm³ of oxygen (an excess) and exploded, 40 cm³ of gas remained after cooling the apparatus to room temperature and pressure.

When this $40\,\text{cm}^3$ of gas was shaken with an excess of aqueous potassium hydroxide, KOH, $30\,\text{cm}^3$ of gas still remained.

(i)	What is the identity of the $30\mathrm{cm}^3$ of gas that remained at the end of the experiment?
(ii)	The combustion of A produced a gas that reacted with the KOH(aq).
	What is the identity of this gas?
iii)	What volume of the gas you have identified in (ii) was produced by the combustion of ${\bf A}$?
	cm ³
iv)	What volume of oxygen was used up in the combustion of A?
	cm ³ [4]

	(d)		cular f	equatic ormula your v	of A.		nnd	your	resu	ults 1	from	(c)(iii)	and	(c)(iv)	to	calcul	ate	the
																		[3]
																[To	otal:	11]
Q22	•																	
	1	Compo	und A	isan oı	ganic o	comp	ound	l whic	h con	tains	carb	on, hyd	rogen	and oxy	gen	į		
			CuO, t	ne orga	nic co	mpou	nd 🖊	A is c	omple					of heate n dioxide				
		The proformed		are co	llected	and	it is	foun	d tha	t 0.3	52g	of CO ₂	and	0.144 g	of H	H ₂ O are	9	
		(a) In	this s	ection,	give y	our a	nsw	ers to	thre	e de	cima	places	i .					
		(i)	Calc	ulate th	e mass	ofca	arbo	n pres	sent ir	า 0.3	52 g d	of CO ₂ .						
			Use of A		ue to ca	alcula	te th	e am	ount, i	in mo	oles, d	of carbo	n aton	ns prese	nt in	0.240g	3	

/::\	Coloulate the many of budyanan propert in 0.144 g of U.O.
(ii)	Calculate the mass of hydrogen present in 0.144 g of H ₂ O.
	Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.240 g of $\boldsymbol{A}.$
(iii)	Use your answers to calculate the mass of oxygen present in 0.240 g of A .
	Use this value to calculate the amount, in moles, of oxygen atoms present in 0.240 g of $\boldsymbol{A}.$
	[6]

	(b)	Us	e your answers to (a) to calculate the empirical formula of A.	Fo Exami. Us
	(c)		[1] ten a $0.148g$ sample of A was vapourised at 60° C, the vapour occupied a volume of 7cm^3 at a pressure of 101kPa .	
		(i)	Use the general gas equation $pV = nRT$ to calculate M_r of A .	
		(ii)	$M_{_{\!f}}$ = Hence calculate the molecular formula of A .	
			[3]	
Q23.	V		o 0.42g of a gaseous hydrocarbon A is slowly passed over a large quantity of heate er(II) oxide, CuO, A is completely oxidised.	ed
			products are collected and it is found that 1.32g of ${ m CO}_2$ and 0.54g of ${ m H}_2{ m O}$ are forme er is the only other product of the reaction.	d.
	(8	ı) (i) Calculate the mass of carbon present in 1.32g of CO ₂ .	
			Use this ∨alue to calculate the amount, in moles, of carbon atoms present in 0.42 of A .	2 g

(ii)	Calculate the mass of hydrogen present in 0.54 g of H ₂ O.
	Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.42 g of A .
(iii)	It is thought that A is an alkene rather than an alkane.
	Use your answers to (i) and (ii) to deduce whether this is correct.
	Explain your answer.
	[5]
	lysis of another organic compound, B , gave the following composition by mass: 4.86%; H, 13.50%, O, 21.64%.
(i)	Use these values to calculate the empirical formula of B.

Ex

Q24.

(b)

1	Zinc is an essential trace element which is necessary for the healthy growth of animals
	and plants. Zinc deficiency in humans can be easily treated by using zinc salts as dietary
	supplements.

(a)	One salt which is used as a dietary supplement is a hydrated zinc sulfate, ZnSO _{4*} xH ₂ O,
	which is a colourless crystalline solid.

Crystals of zinc sulfate may be prepared in a school or college laboratory by reacting dilute sulfuric acid with a suitable compound of zinc.

Give the formulae of two simple compounds of zinc that could each react with dilute sulfuric acid to produce zinc sulfate.

(b) A simple experiment to determine the value of x in the formula ZnSO_{4*}xH₂O is to heat it carefully to drive off the water.

$$ZnSO_4.xH_2O(s) \rightarrow ZnSO_4(s) + xH_2O(g)$$

A student placed a sample of the hydrated zinc sulfate in a weighed boiling tube and reweighed it. He then heated the tube for a short time, cooled it and reweighed it when cool. This process was repeated four times. The final results are shown below.

mass of	mass of tube +	mass of tube + salt
empty tube/g	hydrated salt/g	after fourth heating/g
74.25	77.97	

(i)	Why was the boiling tube heated, cooled and reweighed four times?

(ii) Calculate the amount, in moles, of the anhydrous salt produced.

(iii) Calculate the amount, in moles, of water driven off by heating.

(iv) (Use your results to (ii) and (iii) to c	alculate the value of x in $ZnSO_4$, xH_2O .
			[7]
(c)		r many people, an intake of approx event deficiencies.	imately 15 mg per day of zinc will be sufficient to
	Zir	nc ethanoate crystals, (CH ₃ CO ₂) ₂ Zn.	2H ₂ O, may be used in this way.
	(i)	What mass of pure crystalline zing obtain a dose of 15 mg of zinc?	c ethanoate ($M_{\rm r}$ = 219.4) will need to be taken to
(ii)	th	this dose is taken in solution as 5 ne concentration of the solution use live your answer in moldm ⁻³ .	cm³ of aqueous zinc ethanoate, what would be ed?
			[4]
			[Total: 13]

Q25.

1 Carbon dioxide, CO₂, makes up about 0.040% of the Earth's atmosphere. It is produced by animal respiration and by the combustion of fossil fuels.

In animal respiration, oxygen reacts with a carbohydrate such as glucose to give water, carbon dioxide and energy.

The typical daily food requirement of a human can be considered to be the equivalent of 1.20 kg of glucose, $C_8H_{12}O_8$.

You should express all of your numerical answers in this question to $\underline{\text{three}}$ significant figures.

(a)	(i)	Construct a balanced equation for the complete oxidation of glucose.

(ii) Use your equation to calculate the amount, in moles, of CO₂ produced by one person in one day from 1.20 kg of glucose.

(iii) On the day on which this question was written, the World population was estimated to be $6.82 \times 10^{\circ}$.

Calculate the total mass of CO_2 produced by this number of people in one day. Give your answer in tonnes. [1 tonne = $1.00 \times 10^{\circ}$ g]

[5]

(b)		en fo: duce	ssil fuels are burned in order to give energy, carbon dioxide and water are also d.
	The A ty	hydr pical	rocarbon octane, C ₈ H₁8, can be used to represent the fuel burned in motor cars. fuel-efficient motor car uses about 4.00 dm³ of fuel to tra∨el 100 km.
	(i)	Con	struct a balanced equation for the complete combustion of octane.
	(ii)	The	density of octane is 0.700 g cm ⁻³ .
		Calc	culate the amount, in moles, of octane present in 4.00 dm³ of octane.
		(iii)	Calculate the mass of ${\rm CO_2}$ produced when the fuel-efficient car is driven for a distance of 100 km.
			[5]
	(c)	to p	culate how many kilometres the same fuel-efficient car would have to travel in order produce as much CO_2 as is produced by the respiration of 6.82×10^9 people during a day. Use your answer to (a)(iii).

[2]

(d)	When are als Give to other to	n dioxide is one of a number of gases that are responsible for globe fossil fuels such as octane are burned in a car engine, other atmospherics so produced. The formula of one atmospheric pollutant that may be produced in a han CO ₂ , and state how this pollutant damages the environment.	ic pollutants	
	polluta	nt		
	damag	ge caused	[2]	
			[Total: 14]	
Q26.				
4	Compo	und R is a weak diprotic (dibasic) acid which is very soluble in water.	Exi	For aminer's
	Wh	olution of R was prepared which contained 1.25 g of R in 250 cm³ of solution en 25.0 cm³ of this solution was titrated with 0.100 mol dm¬³ NaOH, 21.6 cm ali were needed for complete reaction.		Use
	(i)	Using the formula H_2X to represent ${\bf R}$, construct a balanced equation for the between H_2X and NaOH.	reaction	
	(ii)	Use the data above to calculate the amount, in moles, of OH ions us titration.	ed in the	
	(iii)	Use your answers to (i) and (ii) to calculate the amount, in moles, of R p 25.0cm^3 of solution.	resent in	
	(iv)	Calculate the amount, in moles, of R present in 250 cm ³ of solution.		

	Т	U
CCH=CHCO₂H	HO ₂ CCH(OH)CH ₂ CO ₂ H	HO ₂ CCH(OH)CH(OH)CO ₂ H

[2]

(v) Calculate M, of R.