Electric Fields – 2021 A2

1. Nov/2021/Paper_42/No.6

(a)	Define electric potential.
	[2]
(b)	An isolated conducting sphere in a vacuum has radius r and is initially uncharged. It is then charged by friction so that it carries a final charge Q . This charge can be considered to be acting at the centre of the sphere.
	By considering the electric potential at its surface, show that the capacitance <i>C</i> of the sphere is given by
	$C = 4\pi\varepsilon_0 r$
	where ε_0 is the permittivity of free space.
	$C = 4\pi \varepsilon_0 r$ where ε_0 is the permittivity of free space.
(c)	The dome of an electrostatic generator is a spherical conductor of radius 13 cm. It is initially charged so that the electric potential at the surface is 4.5 kV.
	A smaller isolated sphere of radius 5.2 cm, initially uncharged, is brought near to the dome. Sparking causes a current between the two spheres until they reach the same potential. Assume that any charge on a sphere may be considered to act as a point charge at its centre.
	Calculate the charge that is transferred between the two spheres.
	charge = C [3]
	[Total: 7]

June/2021/Paper_41/No.6

(a) An isolated metal sphere of radius r is charged so that the electric field strength at its surface is E_0 .

On Fig. 6.1, sketch the variation of the electric field strength *E* with distance *x* from the centre of the sphere. Your sketch should extend from x = 0 to x = 3r.

[3]

(b) The de Broglie wavelength of a particle is λ_0 when its momentum is ρ_0 .

On Fig. 6.2, sketch the variation with momentum p of the de Broglie wavelength λ of the particle for values of momentum from $\frac{p_0}{2}$ to p_0 .

[2]

(c) A radioactive isotope decays with a half-life of 15s to form a stable product.

A fresh sample of the radioactive isotope at time t = 0 contains N_0 nuclei and no nuclei of the stable product.

On Fig. 6.3, sketch the variation with t of the number n of nuclei of the stable product for time t = 0 to time t = 45 s.

3. June/2021/Paper_42/No.5

(a) An isolated metal sphere of radius r is charged so that the electric potential at its surface is V_0 .

On Fig. 5.1, sketch the variation with distance x from the centre of the sphere of the electric potential. Your graph should extend from x = 0 to x = 3r.

Fig. 5.1

[3]

(b) Photons having wavelength λ are incident on a metal surface. The maximum wavelength for which there is emission of electrons is λ_0 . For photons of wavelength $\frac{\lambda_0}{2}$, the maximum kinetic energy of the emitted electrons is E_{MAX} .

On Fig. 5.2, sketch the variation with wavelength λ of the maximum kinetic energy for values of wavelength between $\lambda = \frac{\lambda_0}{2}$ and $\lambda = \lambda_0$.

Fig. 5.2

[3]

(c) A pure sample of a radioactive isotope contains N_0 nuclei. The half-life of the isotope is $T_{\frac{1}{2}}$. The product of the radioactive decay is stable.

The variation with time t of the number N of nuclei of the radioactive isotope is shown in Fig. 5.3.

On Fig. 5.3:

label, on the time axis, the time $t = 1.0T_{\frac{1}{2}}$ and the time $t = 2.0T_{\frac{1}{2}}$

sketch the variation with time t of the number of nuclei of the decay product for time t = 0to time t = T.

[3]

[Total: 9]

4. March/2021/Paper_42/No.6

(a) State a similarity between the gravitational field lines around a point mass and the electric field lines around a point charge.

[1]

(b) The variation with radius *r* of the electric field strength *E* due to an isolated charged sphere in a vacuum is shown in Fig. 6.1.

Fig. 6.1

Use data from Fig. 6.1 to:

(i) state the radius of the sphere

radius = cm [1]

(ii) calculate the charge on the sphere.

charge =	 \mathcal{C}	[3]	۱
charge –	 \sim	14	ı

(c) Using the formula for the electric potential due to an isolated point charge, determine the capacitance of the sphere in (b).

