Quantum Physics – 2021 A2

1.

	Nov/2021/Paper_41/No.10 (a) State an experimental phenomenon that provides evidence for:				
	(i)	the particulate nature of electromagnetic radiation			
		[1]			
	(ii)	the wave nature of matter.			
		[1]			
(b)	A pa	article of matter moves with momentum p.			
	(i)	State the equation that gives the effective wavelength λ of the particle. State the name of any other symbols used.			
	/::\	[2]			
	(ii)	State the name given to the wavelength of the moving particle.			
		[1]			
(c)	Ele	ctrons are accelerated from rest through a potential difference (p.d.) of 4.8 kV.			
	(i)	Show that the final speed of the electrons is $4.1 \times 10^7 \text{m} \text{s}^{-1}$.			

[2]

(ii) Calculate the effective wavelength of a beam of electrons moving at the speed in (c)(i).

wavelength = m [2]

[Total: 9]

(a)	Stat	te what is meant by:
	(i)	the photoelectric effect
		[2]
	(ii)	work function energy.
		[1]
(b)	A po	olished calcium plate in a vacuum is investigated by illuminating the surface with light.
	It is thar	found that no photoelectric current is produced when the frequency of the light is less $16.93 \times 10^{14}\mathrm{Hz}$.
	(i)	State the name of the frequency below which no photoelectric current is produced.
		[1]
	(ii)	Explain how the photon model of electromagnetic radiation accounts for this phenomenon
		100
		[3]
	(iii)	Calculate the work function energy, in eV, of calcium.
		work function energy =eV [2]

Nov/2021/Paper_42/No.9

[Total: 9]

3.	June	e/2021/Paper_41/No.12					
	(a)	Electromagnetic radiation of a single constant frequency is incident on a metal surface. This causes an electron to be emitted.					
		Explain why the maximum kinetic energy of the electron is independent of the intensity of the incident radiation.					
		[3]					
	(b)	Ultraviolet radiation of wavelength 250 nm is incident on the surface of a sheet of zinc. The maximum kinetic energy of the emitted electrons is 1.4 eV.					
		Determine, in eV:					
		(i) the energy of a photon of the ultraviolet radiation					
		energy = eV [3] (ii) the work function energy of the surface of the zinc.					

4

energy = eV [2]

June	e/202	11/Paper_42/No.12
(a)	Sta	te what is meant by a <i>photon</i> .
		[2
(b)		tationary nucleus of samarium-157 ($^{157}_{62}\text{Sm})$ emits a gamma-ray (γ -ray) photon of energ 7 MeV.
	Det	termine, for one γ-ray photon:
	(i)	its wavelength
	(ii)	wavelength =

momentum = Ns [2]

4.

(c)	(i)	Using your answer to (b)(ii),	determine	the	speed	of the	samarium-157	nucleus	afte
		emission of the photon.							

	speed = ms ⁻¹ [2]
(ii)	By reference to your answer in (c)(i) , explain quantitatively why the speed of the samarium-157 nucleus may be assumed to be negligible compared with the speed of the photon.
	[1]
	Palpa Califila Proposition Pr

5.	March/2	2021/Paper_	42/No.11
•	TVIGICITY 2	-021/ Lapel_	_ 12/110.11

(a) Electrons are accelerated through a potential difference of 15 kV. The electrons collide with a metal target and a spectrum of X-rays is produced.

(i)	Explain why a continuous spectrum of energies of X-ray photons is produced.				
	[3				

(ii) Calculate the wavelength of the highest energy X-ray photon produced.

(b) A beam of X-rays has an initial intensity I_o . The beam is directed into some body tissue. After passing through a thickness x of tissue the intensity is I. The graph in Fig. 11.1 shows the variation with x of $\ln (I/I_o)$.

Fig. 11.1

(i) Determine the linear attenuation (absorption) coefficient μ for this beam of X-rays in the tissue.

$$\mu = \dots \text{cm}^{-1} [2]$$

(ii) Determine the thickness of tissue that the X-ray beam must pass through so that the intensity of the beam is reduced to 5.0% of its initial value.

[Total: 10]