Cambridge International Examinations Cambridge International General Certificate of Secondary Education | MATHEMATICS | | 0580/22 | |-------------------|---------------------|---------| | CENTRE
NUMBER | CANDIDATE
NUMBER | | | CANDIDATE
NAME | | | 00679955 Paper 2 (Extended) February/March 2018 1 hour 30 minutes Candidates answer on the Question Paper. Additional Materials: Electronic calculator Tracing paper (optional) Geometrical instruments ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid, DO NOT WRITE IN ANY BARCODES. ## Answer all questions. If working is needed for any question it must be shown below that question. Electronic calculators should be used. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 70. "We eat more ice cream as the temperature rises." 1 What type of correlation is this? | | | S | | | ,, | | | | | | | | _ | | _ | | |-------|---|---|------|---|----|-----|------|------|--|--|--|--|---|---|-----|---| | | | • | | w | | | | | | | | | | 1 | п | ı | |
• | • | • | | ٧ | | | | | | | | | | | - 1 | ı | |
 | | 5 |
 | | | • • |
 |
 | | | | | | ۰ | -1 | ł | Write 0.0000523 in standard form. 2 Calculate $\sqrt{17.8} - 1.3^{2.5}$. 3 Write the recurring decimal 0.8 as a fraction. * Let $$x = 0.8$$ =) $10x - x = 8.8 - 0.8$ $$10 \times = 8.8 \Rightarrow 9 \times = 8$$ 5 The diagram shows a regular pentagon and a kite. Complete the following statements. [1] (b) The kite has rotational symmetry of order [1] 6 Factorise completely. $$15k^2m - 20m^4$$ 7 The diagram shows a regular hexagon ABCDEF. $$\overrightarrow{CD} = \mathbf{p}$$ and $\overrightarrow{CB} = \mathbf{q}$. Find \overrightarrow{CA} , in terms of **p** and **q**, giving your answer in its simplest form. * $$\vec{CA} = \vec{CD} + \vec{DA}$$ 8 Newton has a population of 23 000. The population decreases exponentially at a rate of 1.4% per year. Calculate the population of Newton after 5 years. $$\star A = a \left(1 - \frac{r}{100}\right)^{t}$$ $$\Rightarrow$$ A = 23 000 $\left(1 - \frac{1.4}{100}\right)^5$ 21 400 [2] $2^{p} = \frac{1}{8^{4}}$ 9 Find the value of p. $$\Rightarrow 2^{p} = \frac{1}{(2^{3})^{4}}$$ $$\Rightarrow$$ $2^{P} = 2^{-12}$ Since the bases are equal, $$p = \frac{-12}{2}$$ [2] y is inversely proportional to x. When x = 9, y = 8. Find y when x = 6. Dev makes 600 cakes. 11 18% of the 600 cakes go to a hotel and $\frac{2}{3}$ of the 600 cakes go to a supermarket. Calculate how many cakes he has left. $$\star N = 600 - \left(\frac{18}{100} \times 600\right) - \left(\frac{3}{3}\right)$$ 92 © UCLES 2018 0580/22/F/M/18 Without using your calculator, work out $\frac{7}{8} + \frac{1}{6}$. You must show all your working and give your answer as a mixed number in its simplest form. $$\Rightarrow \frac{21+4}{24}$$ quations. vorking. $$2x + \frac{1}{2}y = 13 - (1)$$ $$3x + 2y = 17 - (2)$$ $$(1) \times 3 : 6x + 1.5y = 39 - (3)$$ $$(2) \times 2 : 6x + 4y = 34 - (4)$$ $$(4) - (3) : 2.5y = -5$$ $$3x + 2y = 17 - (2)$$ (1) $$\times 3:6x+1.5y=39-(3)$$ $$(4) - (3)$$: 2.5 $y = -5$ $$\Rightarrow 3x - 4 = 17$$ $$\Rightarrow 3x = 21$$ $$\Rightarrow x = 7$$ $$v = \frac{-2}{2}$$ [3] A, B, C and D are points on the circumference of the circle. AC and BD intersect at X. (a) Complete the statement. Triangle ADX is similar to triangle BCX. [1] (b) The area of triangle ADX is 36 cm^2 and the area of triangle BCX is 65.61 cm^2 . AX = 8.6 cm and DX = 7.2 cm. Find BX. $$*\left(\frac{8x}{8.6cm}\right)^2 = \frac{65.61cm^2}{36cm^2}$$ $$\Rightarrow BX = \sqrt{\frac{65.61}{36}} \times 8.6 cm$$ $$BX = \frac{11.61}{\text{cm } [3]}$$ 15 NOT TO SCALE Complete the statements. a = because corresponding angles are equal. b = ... 59 because angles in a triangle add up to 180°. © UCLES 2018 (a) Find the area of triangle ABC. $\angle A = \frac{1}{2} \times b \times k$ =) $$A = \frac{1}{2} \times 2.8 \text{ m} \times 1.6 \text{ m}$$ (b) Calculate AC. $$\Rightarrow$$ AC = $(\sqrt{1.6^2 + 2.8^2})$ m 2.24 Solve the equation $2x^2 + 7x - 3 = 0$. Show all your working and give your answers correct to 2 decimal places. $$x_{1} = -\frac{7}{7} + \sqrt{\frac{73}{4}}$$ $$x_{1} = 0.39(2dp), \qquad x_{2} = -3.89(2dp),$$ $$x = 0.39$$ or $x = -3.89$ [4] 18 In this question, use a straight edge and compasses only and show all your construction arcs. (a) Construct the perpendicular bisector of PQ. (b) Construct the bisector of angle ABC. [2] [2] © UCLES 2018 0580/22/F/M/18 - (a) Use set notation to complete the statements for the Venn diagram above. - (i) c = X - (ii) $X \cap Y = \{a, m, e\}$ - (iii) $Y \cap Z = \dots$ [1] - (b) List the elements of $(X \cup Y \cup Z)'$. U, V, W [1] - (c) Find $n(X' \cap Z)$. [1] 20 Describe fully the single transformation that maps | (a) | shape A onto shape B , | |-----|---| | | Rotation 90° anti-clockwise about the origin | | (b) | shape A onto shape C. | | | Enlargement by a scale factor of -2 about the centre (0, 3) | | | [3] | © UCLES 2018 0580/22/F/M/18 21 $$f(x) = 7 - x$$ $g(x) = 4x + 2$ $h(x) = 15 - x^2$ (a) Find ff(2). $$f(5) = 7 - 5 = 2$$ **(b)** Find gf(x) in its simplest form. * $$gf(x) = 4(7-x)+2$$ = $28-4x+2$ = $30-4x$ Find h(2x) in its simplest form. Question 22 is printed on the next page. - Samira and Sonia each have a bag containing 20 sweets. 22 In each bag, there are 5 red, 6 green and 9 yellow sweets. - (a) Samira chooses one sweet at random from her bag. Write down the probability that she chooses a yellow sweet. - (b) Sonia chooses two sweets at random, without replacement, from her bag. - Show that the probability that she chooses two green sweets is $\frac{3}{38}$. [2] Calculate the probability that the sweets she chooses are not both the same colour. (ii) $$\Rightarrow P = I - \left[\left(\frac{5}{20} \times \frac{4}{19} \right) + \left(\frac{6}{20} \times \frac{5}{19} \right) + \left(\frac{9}{20} \times \frac{8}{19} \right) \right]$$ $$\Rightarrow P = \frac{129}{120}$$ Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. 0580/22/F/M/18 © UCLES 2018