

Name:

Section:

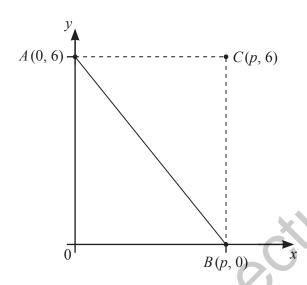
Inequalities Worksheet

1 Three lines and a shaded region are shown on a 1 cm square grid.

(a) Find the three inequalities that define the shaded region.

 [2]

(b) Another region, R, is defined by these three inequalities.


$$x + y \le 5 \qquad \qquad y \ge 2x - 1 \qquad \qquad x \ge 1$$

$$x \ge 1$$

Find the area of region R.

2

..... cm² [1]

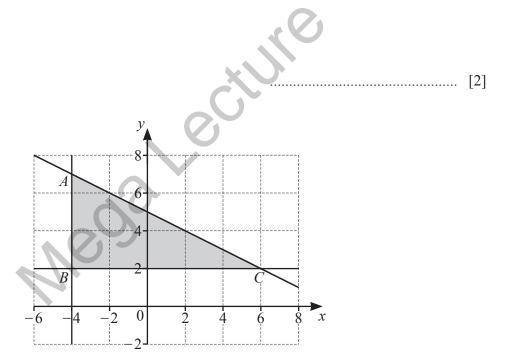
NOT TO **SCALE**

The diagram shows the points A(0, 6), B(p, 0) and C(p, 6). The equation of the line AB is 3y + 4x = 18.

(a) Find the value of p.

$$p = \dots$$
 [1]

(b) Write down the three inequalities that define the region **inside** triangle *ABC*.

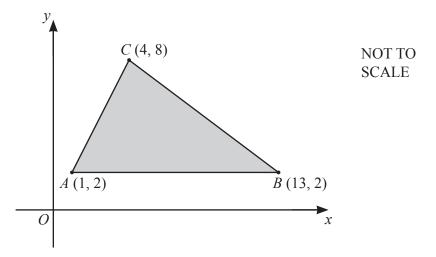

.....[2]

- 3 Write down an irrational value of n that satisfies this inequality.
 - a) $4.5 \le n \le 5.5$

|--|

b) Solve the inequality.

$$23 + 2n > 5 - 6n$$



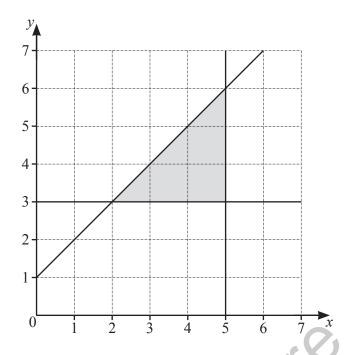
The diagram shows a shaded region ABC.

The equation of the line AC is $y = -\frac{1}{2}x + 5$.

Write down the three inequalities that define the shaded region.

• • • • • • • • • • • • • • • • • • • •		
	•••••	

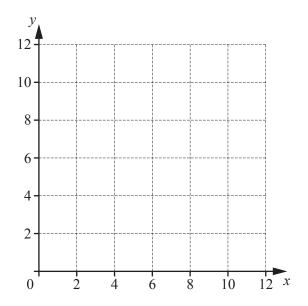
The diagram shows a triangle formed by joining the points A(1, 2), B(13, 2) and C(4, 8). The equation of the line BC is 2x + 3y = 32.


(a) The region **inside** triangle *ABC* is defined by three inequalities. One of these is 2x+3y < 32.

Write down the other two inequalities.

 [2]

(b) The point (k, 7), where k is an integer, lies **inside** triangle ABC.


Find the possible values of k.

The shaded region is defined by three inequalities.

Find these three inequalities.

[3]

The region R is defined by the inequalities

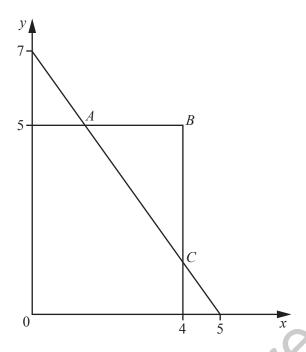
$$2 \leqslant x \leqslant 8$$

$$5 \leqslant y \leqslant 10$$

$$x + y \geqslant 10$$

On the diagram, shade and label the region *R*.

[3]

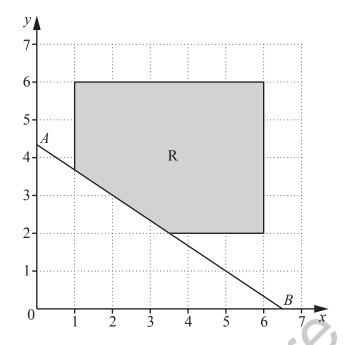

8 (a) Write down all the integers that satisfy the inequality $-\frac{3}{2} \le x < 2$.

Answer[1]

(b) Complete the following inequality with a fraction.

 $\frac{3}{4} > \dots > \frac{1}{2}$ [1]

(c) Write down an irrational value of n that satisfies this inequality.


In the diagram, the equation of the line AC is 7x + 5y = 35.

(a) Write down the three inequalities that define the region inside triangle ABC.

Answer	
	гэ

(b) The line y = kx, where k is an integer, passes through triangle ABC.

Find the greatest possible value of k.

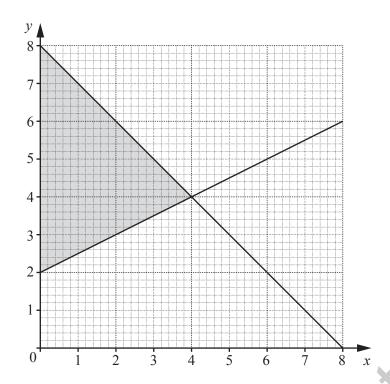
In the diagram, the line 3y + 2x = 13 meets the axes at A and B.

(a) Find the coordinates of A.

Answer	() [1 ⁻
THISWEI	(,	JL1.

(b) The shaded region R is defined by five inequalities. Two of these are $x \le 6$ and $y \le 6$.

Write down the other three inequalities.


Answer	
	[2:

(c) The point P is in the shaded region R.

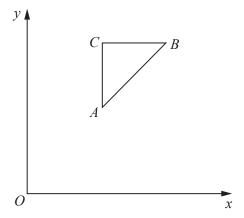
Given that AP is as large as possible, write down the coordinates of P.

Answer (.....) [1]

11 The diagram shows the lines x + y = 8 and 2y = x + 4.

(a) The shaded region on the diagram is defined by three inequalities.

Write down these three inequalities.


Answer	
	[2

(b) Another region, R, is defined by the inequalities $x + y \le 8$, $2y \le x + 4$ and $y \ge a$, where a is an integer.

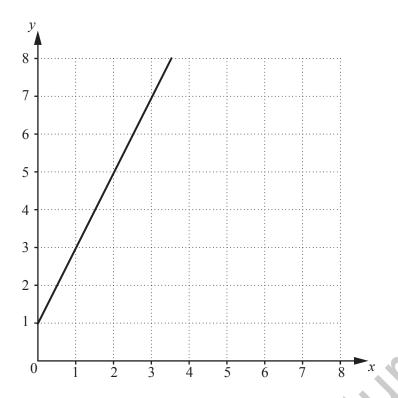
This region contains 5 points with integer coordinates.

Write down the value of *a*.

Answer
$$a = \dots [1]$$

The sides of the triangle ABC are formed by the straight lines with equations

$$x = 3$$
, $y = 6$, $y = x + \frac{1}{2}$.

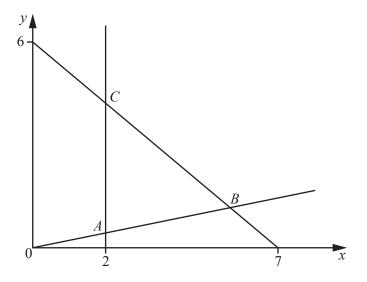

(a) The region **inside** the triangle is defined by three inequalities.

Write down these three inequalities.

Answer		••••	••••	•••••	 •••••	
	••••		••••		 	
						[2]

(b) The point (4, k), where k is an integer, lies inside the triangle.

Find the value of k.



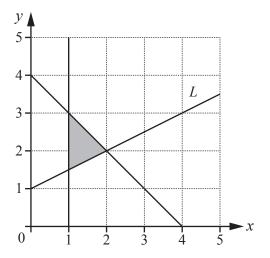
The diagram shows the line y = 2x + 1.

The point P has coordinates (a, b) where a and b are both positive integers. The values of a and b satisfy the inequalities a < 2, b < 7 and b > 2a + 1.

Write down all the possible coordinates of P.

Answer _____[2]

In the diagram, the equation of the line

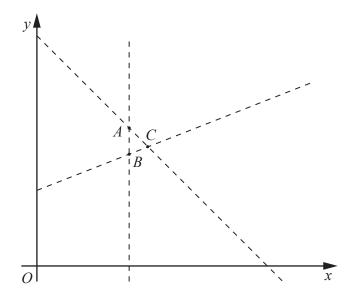

- through *B* and *C* is 6x + 7y = 42
- through A and B is $y = \frac{x}{5}$.
- (a) The region **inside** triangle *ABC* is defined by three inequalities. One of these is $y > \frac{x}{5}$.

Write down the other two inequalities.

Answer	

(b) The line y = kx passes through triangle ABC.

Find all the possible **integer** values of k.


(a) Find the gradient of the line L.

Answer	 <u> </u>	 	[1	-

(b) The shaded region on the diagram is defined by three inequalities. One of these is $x + y \le 4$.

Write down the other two inequalities.

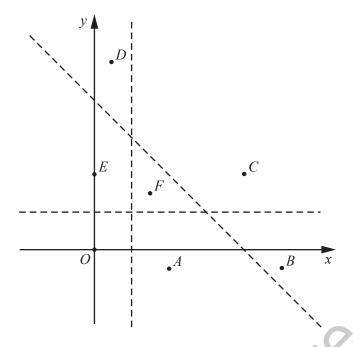
Answer	
	[2]

The diagram shows the three lines x = 8, x + y = 21 and 2y = 12 + x which intersect at the points A, B and C.

(a) Find the coordinates of B.

Answer	(,)	[1]

(b) The region **inside** triangle ABC is defined by three inequalities.


One of these is x + y < 21.

Write down the other two inequalities.

Answer

(c) Find the coordinates of the point, with integer coordinates, that is inside triangle ABC.

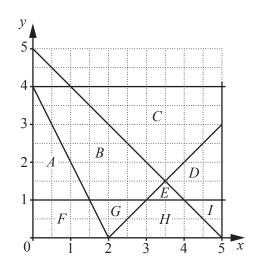
Answer (....., ,) [1]

The diagram shows the three lines x = 1, y = 1 and x + y = 4 and the seven points O, A, B, C, D, E and F.

(a)	Which of these seven	points lie in	the region	defined by	x + y > 4?

Answer [1]

(b) Which one of these seven points lies in the region defined by


$$x < 1, y > 1$$
 and $x + y < 4$?

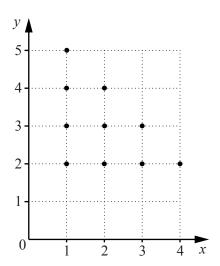
Answer[1]

(c) Given that O is (0, 0) and C is (4, 2), find the inequality that defines the region below the line that passes through O and C.

Answer[1]

18 The diagram shows the regions A to I.

Give the letter of the region defined by each set of inequalities.


(a) x > 0, y > 0, y < 1 and y < 4 - 2x

Answer[1]

(b) y > 1, y < x - 2 and y < 5 - x

Answer[1]

19 The diagram shows 10 points, with coordinates (h, k), where h and k are integers.

- (a) For these 10 points find
 - (i) the maximum value of k h,

Answer[1]

(ii) the value of k, for the point that lies on the line $y = \frac{1}{2}x$.

Answer k =[1]

(b) The coordinates of the 10 points satisfy the inequalities

$$h \geqslant a, \qquad k \geqslant b, \qquad h + k \leqslant c$$

Write down the values of a, b and c.

Answer $a = \dots$

$$c = \dots [2]$$