

## **HCF/LCM Worksheet**

1 (a) Write 420 as the product of its prime factors.

(b) Given that  $1512 = 2^3 \times 3^3 \times 7$ , find the highest common factor of 420 and 1512.

2 (a) Write 216 as a product of its prime factors.

.....[2]

(b) Two positive integers are each greater than 25. Their lowest common multiple (LCM) is 216. Their highest common factor (HCF) is 18.

Find the two integers.

| 3 | (a) | Write 108 as the product of its prime factors. | and [2] |   |
|---|-----|------------------------------------------------|---------|---|
|   |     |                                                | ecc     |   |
|   |     | negga                                          | [2]     | ] |

(b) Find the lowest common multiple (LCM) of 108 and 180.

4 (a) Write 168 as a product of its prime factors.

......[2]

(b) The highest common factor of 168 and N is 42.

Given that 200 < N < 300, find the two possible values of *N*.

 $N = \dots$  and  $N = \dots$  [2]

Scinc

5 (a) (i) Write 54 as the product of its prime factors.

*Answer* ......[1]

(ii) Find the smallest possible integer m such that 54m is a cube number.

6 (a) Express 96 as a product of its prime factors.

(b) 24 is a common factor of 96 and the integer n.

Given that n is less than 96, find the largest possible value of n.

Answer .....[1]

7 (a) Express 198 as the product of its prime factors.

**(b)**  $M = 2^2 \times 3 \times 5^2$   $N = 2^3 \times 3^2 \times 7$ 

(i) Find the largest number that divides exactly into *M* and *N*.

(ii) Find the smallest value of k, such that  $M \times k$  is a cube number.

Answer  $k = \dots$ [1]

8 (a) Express 60 as a product of its prime factors.

(b) Find the smallest possible integer *m* such that 60*m* is a square number.

Answer  $m = \dots [1]$ 

(c) The lowest number that is a multiple of both 60 and the integer *n* is 180.Find the smallest possible value of *n*.

Answer  $n = \dots [1]$ 

9 (a) Express 180 as the product of its prime factors.

Answer .....[1]

(b)  $\sqrt{180}$  can be expressed in the form  $p\sqrt{q}$ , where p and q are integers.

Find the smallest value of p + q.

*Answer* ......[1]

10 (a) Express 108 as a product of its prime factors.

.....[1] Answer

(b) Written as products of their prime factors,  $N = 2^p \times 5^q \times 7^r$  and  $500 = 2^2 \times 5^3$ . The highest common factor of N and 500 is  $2^2 \times 5^2$ . The lowest common multiple of N and 500 is  $2^3 \times 5^3 \times 7$ .

<u>160</u>

Find p, q and r.

11 Written as a product of prime factors,  $168 = 2^3 \times 3 \times 7$ .

(a) Express 140 as a product of its prime factors.

(*a*) .....[1]

(b) Find the highest common factor of 168 and 140.

(*b*) ......[1]

(c) Find the smallest positive integer, n, such that 168n is a square number.

(*c*) ......[1]

12 (a) Write down all the factors of 18.

(*a*) ......[1]

(b) Write 392 as the product of its prime factors.

(*b*) ...... [1] **13** Written as the product of its prime factors,  $360 = 2^3 \times 3^2 \times 5$ .

(a) Write 108 as the product of its prime factors.

- (b) Find the lowest common multiple of 108 and 360. Give your answer as the product of its prime factors.
- (c) Find the smallest positive integer k such that 360 k is a cube number.

Answer (a)  $108 = \dots [1]$ 

- *(b)* .....[1]
- $(c) k = \dots [1]$