

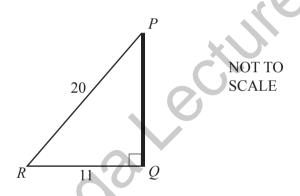
Name:

Section:

Trigonometry Worksheet

1

ABCD is the floor plan of an exhibition hall with dimensions shown in metres. Points A, B, C and D all lie on the same horizontal plane.

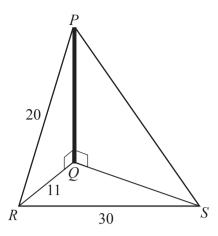

(a) Calculate angle BCD.

(b) A light is attached to the ceiling vertically above B. The angle of elevation of the light from C is 8.2°.

Calculate the angle of elevation of the light from *A*.

.....[4

2

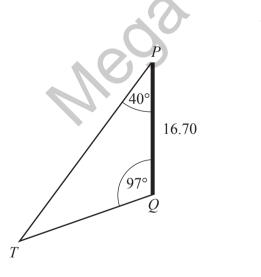

PQ is a vertical pole.

A rope is attached from the top of the pole, P, to a point on the ground, R.

$$PR = 20 \,\mathrm{m}$$
, $RQ = 11 \,\mathrm{m}$ and $R\hat{Q}P = 90^{\circ}$.

(a) Show that $PQ = 16.70 \,\mathrm{m}$, correct to 2 decimal places.

(b)

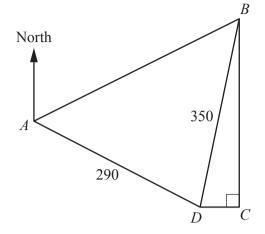

A second rope is attached from P to a point S.

$$P\hat{Q}S = 90^{\circ}$$
 and $RS = 30 \,\mathrm{m}$.

The angle of elevation of P from S is 36° .

Calculate \hat{RQS} .

(c)


$$R\hat{Q}S = \dots [5]$$

NOT TO SCALE

A third rope is attached from P to a point T.

$$T\hat{P}Q = 40^{\circ} \text{ and } P\hat{Q}T = 97^{\circ}.$$

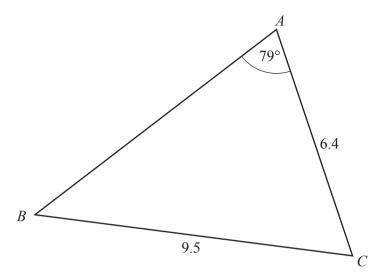
Calculate PT.

NOT TO SCALE

ABCD is a field on horizontal ground.

The bearing of B from A is 070°. The bearing of D from A is 125°. C is due south of B and due east of D. $AD = 290 \,\mathrm{m}$ and $BD = 350 \,\mathrm{m}$.

(a) Calculate the bearing of D from B.



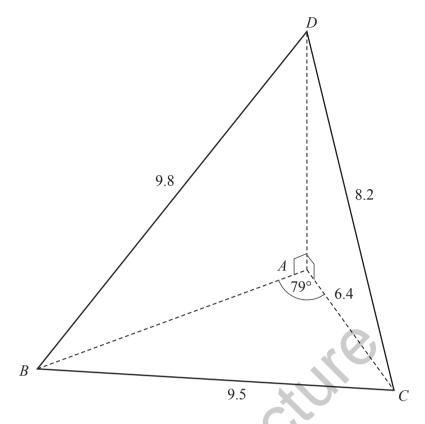
(b) A vertical mast is positioned at *D*. The angle of elevation of the top of the mast from *A* is 10°.

Calculate the angle of elevation of the top of the mast from C.

4

NOT TO SCALE

In triangle ABC, $AC = 6.4 \,\text{cm}$, $BC = 9.5 \,\text{cm}$ and $B\hat{A}C = 79^{\circ}$.

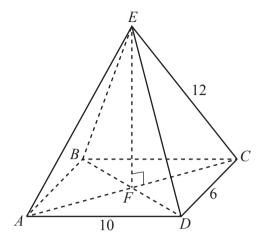

(a) (i) Calculate \hat{ABC} .

 $\hat{ABC} = \dots [3]$

(ii) Calculate the area of triangle ABC.

..... cm² [3]

(b)


The same triangle ABC forms the horizontal base of a pyramid ABCD. $BD = 9.8 \,\mathrm{cm}$ and $CD = 8.2 \,\mathrm{cm}$. $B\hat{A}D = C\hat{A}D = 90^{\circ}$.

(i) Calculate $B\hat{D}C$.

$$B\hat{D}C = \dots$$
 [3]

(ii) Calculate the angle of elevation of D from C.

5 [Volume of pyramid = $\frac{1}{3}$ × base area × height]

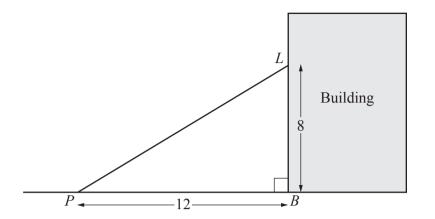

ABCDE is a rectangular-based pyramid.

AC and BD intersect at F.

EF is perpendicular to FC.

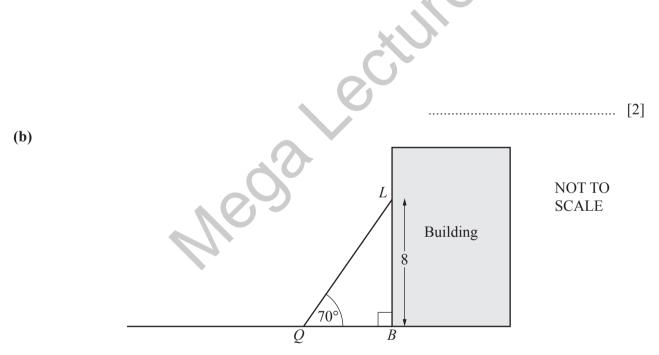
$$AD = 10 \,\mathrm{cm}$$
, $DC = 6 \,\mathrm{cm}$ and $EC = 12 \,\mathrm{cm}$.

(a) Show that EF = 10.5 cm, correct to 1 decimal place.


(b) Find the volume of the pyramid.

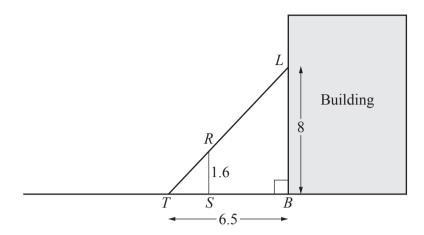
[4]

(c)	lculate $D\hat{E}C$.
	$D\hat{E}C = \dots [3]$
(d)	lculate the area of triangle DEC.
	cm ² [2]
	183


6 A light, L, is fixed on a building 8 m above the base, B, of the building.

(a)

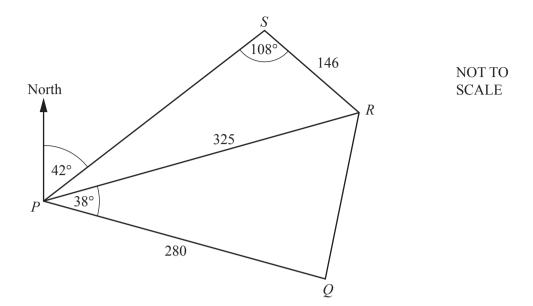
A point, P, is on the horizontal ground 12 m from B.


Calculate the angle of elevation of L from P.

A ladder is placed on the ground at Q to reach the light, L. The ladder makes an angle of 70° with the ground.

Calculate QL.

NOT TO SCALE (c)

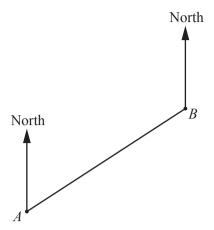


A vertical pole, RS, of length 1.6 m is placed touching the horizontal ground. The light produces a shadow, TS, of the pole on the horizontal ground. LRT is a straight line and TB = 6.5 m.

Calculate TS.

$$TS = \dots m [2]$$

NOT TO SCALE 7



A field is in the shape of a quadrilateral *PQRS*. A path crosses the field from *P* to *R*. $PQ = 280 \,\text{m}$, $RS = 146 \,\text{m}$ and $PR = 325 \,\text{m}$. *S* is on a bearing of 042° from *P*, $P\hat{S}R = 108^\circ$ and $R\hat{P}Q = 38^\circ$.

(a) Calculate the bearing of R from P.

.....[4

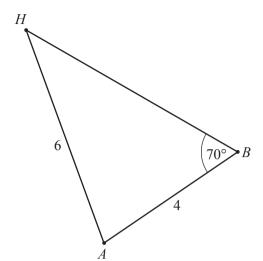
(b) (i) Show that QR = 202 m, correct to the nearest metre.

The diagram shows the positions of two boats, A and B, drawn to a scale of 1:m. The actual distance between the two boats is $4 \,\mathrm{km}$.

(a) Find m, giving your answer correct to 1 significant figure.

[2]

(b) Measure the bearing of A from B.

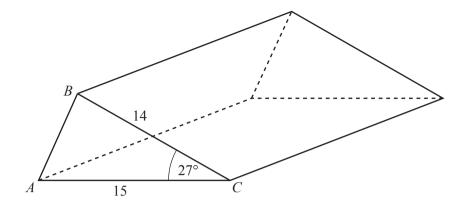

.....[1]

(c) A third boat is positioned at C.C is on a bearing of 120° from A and on a bearing of 195° from B.

Find and label *C* on the diagram. [2]

(d) Find, by measurement, the actual distance in kilometres from A to C.

(e)


NOT TO SCALE

The diagram shows the positions of the boats, A and B, and a harbour, H. $AB = 4 \,\mathrm{km}$, $AH = 6 \,\mathrm{km}$ and $A\hat{B}H = 70^{\circ}$.

(i) Calculate AĤB.

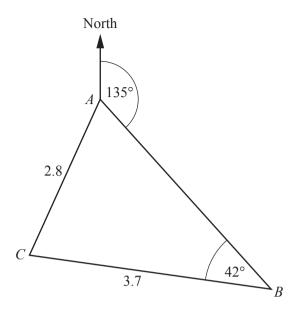
$$A\hat{H}B = \dots [3]$$

(ii) The boat at A travels in a straight line to the harbour at H. The average speed of the boat is p km/h. It takes 12 minutes 20 seconds for the boat to travel from A to H.Calculate p.

The diagram shows a triangular prism. AC = 15 cm, BC = 14 cm and angle $ACB = 27^{\circ}$.

(a) Calculate AB.

AB =	 cm	[3]

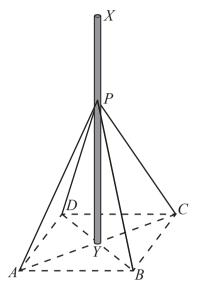

(b) The length of the prism is p cm and the volume of the prism is $1000 \,\mathrm{cm}^3$. Calculate p.

(c)	The prism is to be packed in a carton.
	The carton is a cuboid of size 15 cm by $p \text{ cm}$ by $h \text{ cm}$.

Calculate the smallest possible value of *h*.

$h = \dots 12$	[2]
----------------	-----

A yacht sails the triangular route shown.


The bearing of B from A is 135°. BC = 3.7 km, AC = 2.8 km and $A\hat{B}C = 42^{\circ}$.

(a) Show that $\hat{CAB} = 62.2^{\circ}$, correct to 1 decimal place.

[3]

(b) Find the bearing of A from C.

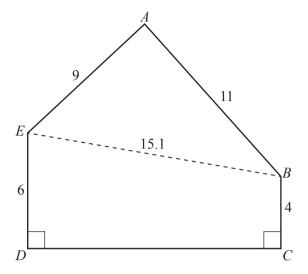
(c) The yacht sails from A to B to C to A.Calculate the total length of the route.

A vertical mast, XY, is positioned on horizontal ground.

The mast is supported by four cables attached to the mast at P and to the ground at points A, B, C and D.

Y is the centre of the square *ABCD*.

 $PY = 7.50 \,\mathrm{m}.$

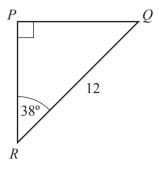

(a) Given that AB = 3.65 m, show that AY = 2.58 m correct to 3 significant figures.

[3]

(b) Calculate the length of one of the cables used to support the mast.

Answer m [2]

(c)	Calculate $A\hat{P}B$.	
	Answer	[3]
(d)	The angle of elevation of X from A is 77.0°.	
	(i) Calculate the height, XY of the mast.	
	Answer m	[2]
	(ii) Calculate the angle of elevation of X from the midpoint of AB .	
	Answer	[2]


ABCDE is the cross-section of a building. All the lengths are given in metres.

7

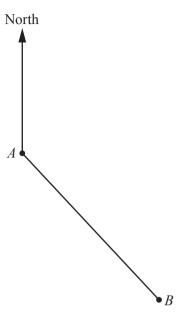
 m	[3]

(b) Calculate angle *EAB*.

 [3]
 ادا

Triangle PQR has a right angle at P, angle $PRQ = 38^{\circ}$ and RQ = 12 cm.

(a) Calculate PQ.

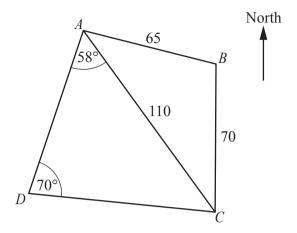

Answer	 cm	[2]

(b) S is a point such that angle PRS is a right angle and QS = 10 cm.

Calculate the two possible values of angle QSR.

Answer	or	[4]

14 The diagram shows the position of two villages A and B.



(a) Measure the bearing of B from A.

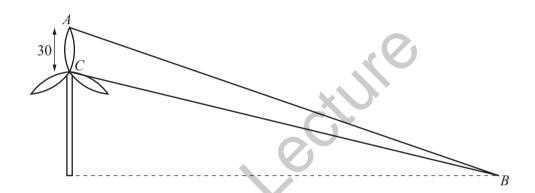
Answer[1]

(b) The bearing of village C from A is 265°.Work out the bearing of A from C.

Answer[1]

ABCD is a level playing field. AB = 65 m, BC = 70 m and CA = 110 m. $\hat{CDA} = 70^{\circ}$, $\hat{DAC} = 58^{\circ}$ and C is due South of B.

(a) Calculate the bearing of A from C.


Answer [4]

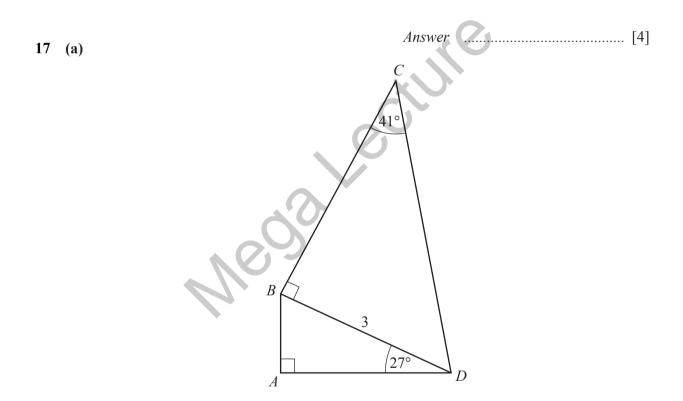
(b) Calculate AD.

1	6)	There are two	wartical trace	AV and CV	each of height 17 m.	one at each and	of the 1	noth 1C
U	C)	There are two	vertical frees.	AA and CI ,	each of height 1/111.	, one at each end	or me j	paul AC.

(i) Calculate the angle of elevation of Y from B.

16 (a)

The diagram shows a vertical wind turbine with blades $30 \,\mathrm{m}$ long. The blades are stationary with the point A being the maximum distance possible from the horizontal ground.


The point B is such that the angle of elevation of A from B is 34° and the angle of elevation of the centre of the blades, C, from B is 25°.

Calculate the distance AB.

Answer	m	[3

(b) A different wind turbine, shown in the diagram on the next page, has the centre of its blades, F, 75 m from the base of the turbine, D. Point E is on sloping ground, 180 m from F and 130 m from D.

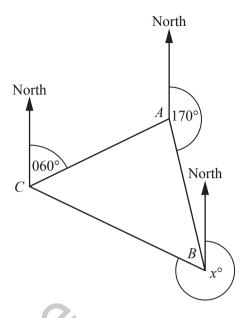
Calculate the angle of depression of E from F.

In the framework ABCD, BD = 3 m. $B\hat{D}A = 27^{\circ}$, $B\hat{C}D = 41^{\circ}$. $D\hat{B}C$ and $D\hat{A}B$ are right angles.

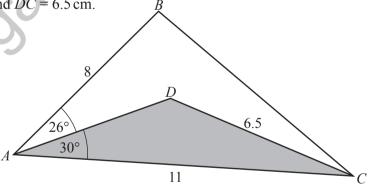
(i) Find *AD*.

(ii) Find CD.

Answer m [3]

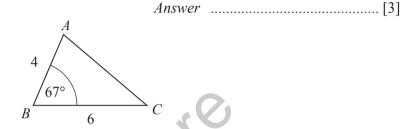

(b) In triangle PQR, PQ = 3 m and QR = 5 m. The area of triangle PQR = 6 m².

Find the two possible values of $P\hat{Q}R$.


Answer $P\hat{Q}R =$ or [3]

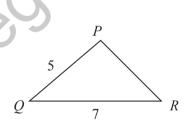
18 In the diagram, the bearing of B from A is 170°. The bearing of A from C is 060°. The bearing of C from B is x°.

Given that triangle ABC is isosceles, find the three possible values of x.


19 In the diagram, AB = 8 cm, AC = 11 cm and DC = 6.5 cm. $B\hat{A}D = 26^{\circ}$ and $D\hat{A}C = 30^{\circ}$.

(a) Calculate BC.

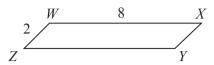
(b) Calculate the obtuse angle *ADC*.


20 (a)

In triangle ABC, AB = 4 m, BC = 6 m and $A\hat{B}C = 67^{\circ}$.

(i) Show that the area of triangle ABC is $11.05 \,\mathrm{m}^2$ correct to 2 decimal places.

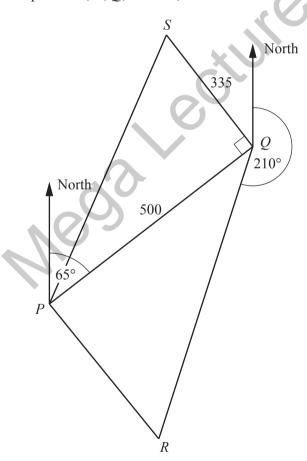
(ii)



In triangle PQR, PQ = 5 m and QR = 7 m. Area of triangle PQR = Area of triangle ABC.

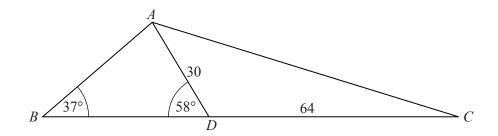
Find the acute angle *PQR*.

[1]


(iii)

In the parallelogram WXYZ, WX = 8 m and WZ = 2 m. Area of parallelogram WXYZ =Area of triangle ABC.

Find the obtuse angle *ZWX*.


The diagram shows the positions, P, Q, R and S, of four hotels.

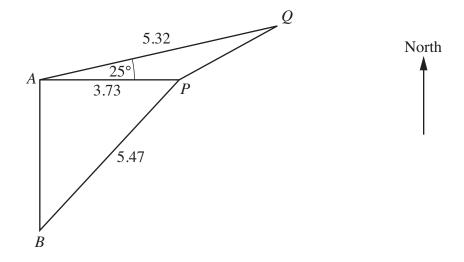
The bearing of Q from P is 065° and the bearing of R from Q is 210° . $PQ = 500 \,\text{m}$, $SQ = 335 \,\text{m}$ and $P\hat{Q}S = 90^{\circ}$.

(a) Calculate $P\hat{Q}R$.

(b)	Calculate the shortest distance from P to QR .		
(c)	Calculate the bearing of S from P .	Answer	m [2]
		S.C.F.C.	
	Mega		
		Answer	[3]

A, B, C and D are four points on level ground.

BDC is a straight line. AD = 30 m and DC = 64 m. $A\hat{B}D = 37^{\circ}$ and $A\hat{D}B = 58^{\circ}$.


(a) Calculate AB.

	· SC/	
	Ans	wer
		m [3]
(b) Calculate AC.	160	

Answer

																												r	n	l	۲	4	
•	• •	• •	٠	•	٠	•	• •	•	٠	٠	٠	• •	•	•	٠	•	٠	٠	٠	٠	•	•	•	٠	• •	• •	•	1	11	L	1	•	

(c)	Calculate the area of triangle <i>ADC</i> .
	Answer m ² [2]
(d)	A vertical tower stands at A . P is the point on the line BC such that the angle of depression from the top of the tower to the line BC is greatest.
	Given that this angle of depression is 34°, calculate the height of the tower.
	<i>Answer</i> m [3]

The diagram shows four points, A, B, P and Q, at sea. B is due South of A and P is due East of A. $AP = 3.73 \,\mathrm{km}$, $BP = 5.47 \,\mathrm{km}$, $AQ = 5.32 \,\mathrm{km}$ and $P\hat{A}Q = 25^{\circ}$.

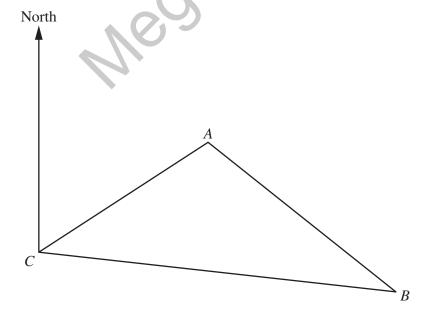
(a) Calculate $A\hat{B}P$.

4	F 🔿
Answer	 2

(b) Calculate *PQ*.

Answer	km	[4]
Allswei	 NIII	17

1	C.	A boat	sailed in	a straight	line from	Q to A
٦	•	, iloun	barrea iii	a straight	11110 110111	2 00 11.


(i) Find the bearing of A from Q.

Answer[1]

(ii) A lighthouse is situated at A.
The top of the lighthouse is 30 m above sea level.
Calculate the angle of depression of the boat from the top of the lighthouse when the boat is 100 m from A.

Answer[2

24 The scale drawing shows three towns, A, B and C. The scale of the drawing is 1 cm to 25 km.

(a) Measure the bearing of A from C.

Answer[1]

(b)	Find the bearing of C from A .		
(c)	Find the actual distance, in kilometres, from B to C .	Answer	[1]
		Answer	km [1]

