

(i) 81,54,36 $r = 54/81 \text{ or } 36/54$ $S_{10} = 81 (1 - \frac{2}{3}^{10}) \div (1 - \frac{2}{3})$ $\rightarrow 239$	B1 M1 A1	Value of r – unsimplified – all Correct formula – power 10 a Co. More than 3 s.f. ok, but n	and used	
(ii) $n = (180 - 25) \div 5 + 1 = 32$ Use of any S _n formula	[3] B1 M1	31 gets M0 Correct formula – not for n =		
→ 3280	A1	Со	07(
Question 5: A geometric progression has first term 64 a	•		970)9/01/O/N/04
(i) the common ratio,			[2]	
(ii) the sum of the first ten terms.			[2]	
Answer			1-1	
(i) a/(1–r) = 256 and a = 64	M1	Use of correct formula		
\rightarrow r = $\frac{3}{4}$	A1	Correct only		
$(11) 0 = 0.000 0.75^{10} (0.075)$		[2]	7510	
(ii) $S_{10} = 64(1-0.75^{10})$ (1-0.75) $\rightarrow S_{10} = 242$	M1 A1	Use of correct formula – 0. Correct only	75 not 0.75	
		[2]		0700/04/04/1/04
Question 6:			2	9709/01/M/J/04
A geometric progression has 6 terms. The fit	rst term is 1	92 and the common ratio is 1.5.	An arithmetic	
progression has 21 terms and common dif				
geometric progression is equal to the sum o term and the last term of the arithmetic prog		ms in the arithmetic progression	, find the first [6]	
Answer	gression.		[0]	
GP $a = 192, r = 1.5, n = 6$				
AP $a = a, d = 1.5, n = 21$		(3)		
$S_6 \text{ for GP} = 192(1.5^6 - 1) \div 0.5$ = 3990		ect sum formula used.		
S_{21} for AP = $\frac{21}{2}(2a + 20 \times 1.5)$ M1 DM1 A1		ect sum formula used. ds both M's - soln of sim eqns.		
Equate and solve $\rightarrow a = 175$	0	ect formula used.		
21^{st} term in AP = a + 20 <i>d</i> = 205 (or from 3990 = 21(a + $h/2$	[6]		9709/01/M/J/05	
Question 7: A small trading company made a profit of a different plans, plan A and plan B, for incre			onsidered two	
Under plan A , the annual profit would incr Find, for plan A ,	rease each	year by 5% of its value in the p	receding year.	
(i) the profit for the year 2008,			[3]	
(ii) the total profit for the 10 years 2000 to Under plan B , the annual profit would incre			[2]	
(iii) Find the value of <i>D</i> for which the tota the same for both plans.	al profit for	the 10 years 2000 to 2009 inclu	sive would be [3]	
Answer				

(ii) the total amount of money given to the charity during the years 2001 to 2011 inclusive. [2]

(i)	r = 1.05 with GP 2011 is 11 years.	B1	Anywhere in the question. This could	
	Uses a/ ⁻¹	M1	be marked as $2 + 3$. Allow if correct formula with $n = 10$	
	→ \$8 144 (or 8140)	A1	co. (allow 3 sf)	
(ii)	Use of S _n formula	[3] M1	Allow if used correctly with 10 or 11.	
(1466) 3 	→ \$71 034	A1 [2]	co (or 71 000)	9709/01/M/J/06

Question 10:

The 1st term of an arithmetic progression is a and the common difference is d, where $d \neq 0$.

(i) Write down expressions, in terms of *a* and *d*, for the 5th term and the 15th term. [1]

The 1st term, the 5th term and the 15th term of the arithmetic progression are the first three terms of a geometric progression.

(ii) Show that
$$3a = 8d$$
. [3]

(iii) Find the common ratio of the geometric progression.

Answer

I. (i) $a+4d$ and $a+14d$	B1	Both correct.	
(ii) $a+4d = ar$, $a+14d=ar^{2}$ or $\frac{a}{a+4d} = \frac{a+4d}{a+4d}$ or " $ac=b^{2}$ "	[1] M1	Correct first step – award the mark for both of these starts.	
$a+4d a+14d \\ \rightarrow 3a=8d$	M1 A1 [3]	Correct elimination of <i>r</i> . co. nb answer was given.	
(iii) $r = \frac{a+4d}{a} \text{ or } \frac{a+14d}{a+4d} = 2.5$	M1 A1 [2]	Statement + some substitution. co.	9709/01/O/N/07

[2]

[4]

[3]

Question 11:

The second term of a geometric progression is 3 and the sum to infinity is 12.

(i) Find the first term of the progression.

An arithmetic progression has the same first and second terms as the geometric progression.

(ii) Find the sum of the first 20 terms of the arithmetic progression.

Answer

				_
(i)	$ar=3$ and $\frac{a}{1-r}=12$	B1 B1	co for each one.	
	Solution of sim eqns $\rightarrow a=6$	M1 A1 [4]	Needs to eliminate <i>a</i> or <i>r</i> correctly. co (M mark needs a quadratic)	
(ii)	a = 6, d = -3 $S_{20} = 10(12 - 57)$ $\rightarrow -450$	B1√ M1 A1	For $d = 3 - his$ "6". Sum formula must be correct and used. co.	
		[3]		9709/01/M/J/07

Question 12:

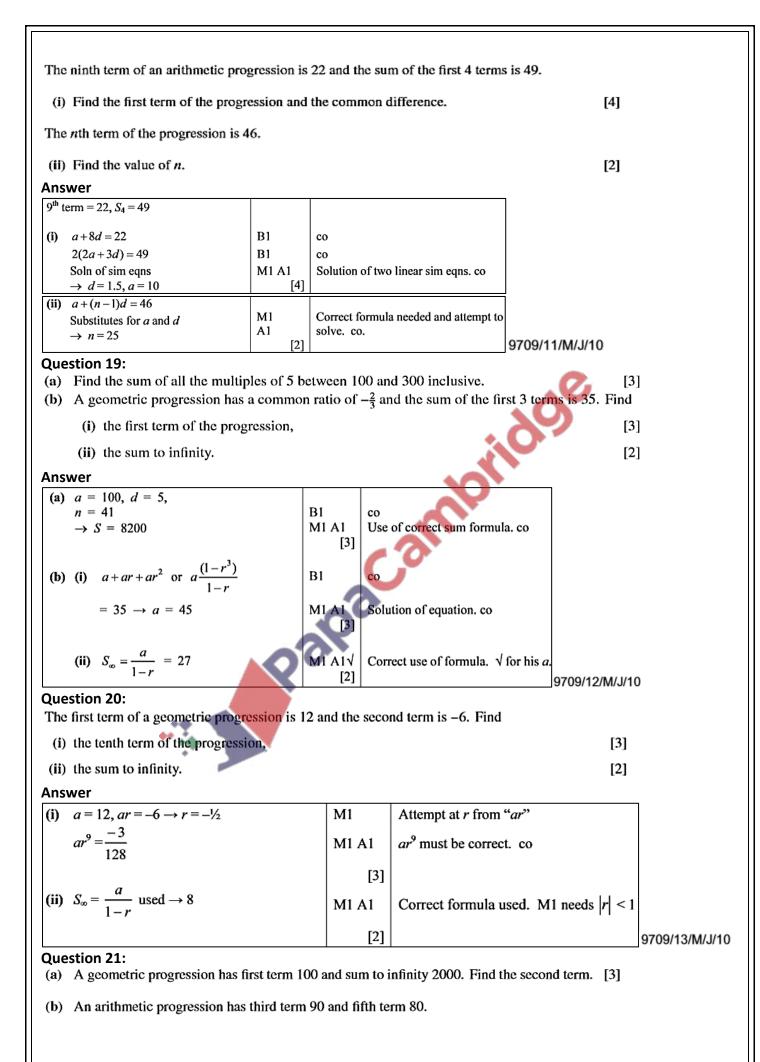
The first term of a geometric progression is 81 and the fourth term is 24. Find

(i) the common ratio of the progression, [2](ii) the sum to infinity of the progression. [2]

The second and third terms of this geometric progression are the first and fourth terms respectively of an arithmetic progression.

(iii)) Find the sum of the first ten terms of the arithmetic progression.	[3]

-			1	-
(i) $a = 81$, $ar^3 = 24$ $\rightarrow r^3 = 24/81 \rightarrow r = \frac{2}{3}$ or 0.60		M1	Valid method for r.	
$\rightarrow r^3 = 24/81 \rightarrow r = \frac{2}{3} \text{ or } 0.66$	67	Al	co	
		[2]		
-				
(ii) $S_{\infty} = \frac{a}{1-r} = 81 \div \frac{1}{3} = 243$		M1 A1√	Correct formula. $$ for his <i>a</i> and <i>r</i> ,	
1-r			providing $-1 < r < 1$.	
		[2]	, ,	
(iii) 2nd term of GP = $ar = 81 \times \frac{2}{3} =$	- 54			
(iii) 2nd term of GP = $ar^2 = 36$	- 54	M1	Finding the 2nd and 2rd terms of CD	
$\rightarrow 3d = -18 (d = -6)$		M1 M1	Finding the 2nd and 3rd terms of GP. M for finding d + correct S ₁₀ formula. co	
\rightarrow S ₁₀ = 5 × (108 - 54) = 270		Al	W for finding $a + correct S_{10}$ formula. Co	,
$\rightarrow 3_{10} = 5 \land (100 = 54) = 270$		[3]		
		[3]		9709/01/M/J/08
Question 13:				
The first term of an arithmetic progr	ession is	6 and the f	ifth term is 12. The progression has n	terms
and the sum of all the terms is 90. Fi	ind the va	lue of n.		[4]
Answer				
$3 1^{\text{st}} \text{ term} = a = 6$				
$5^{\text{th}} \text{ term} = a - 6$ $5^{\text{th}} \text{ term} = a + 4d = 12$				
$ \Rightarrow d = 1.5 $	B1	Correct value	o of d	
$S_n = \frac{n}{2} (12 + (n-1)1.5) = 90$	M1	Use of correct	ct formula with his d	
$\rightarrow n^2 + 7n - 120 = 0$	DM1	Correct meth	nod for soln of quadratic	
$\rightarrow n + n - 120 = 0$ $\rightarrow n = 8$	Al		nclusion of $n = -15$)	
$\rightarrow n - \delta$	[4]	Co (ignore in		
	ניין		9709/01/0/N	1/08
Question 14:	1	1		100
	6 and a fo	wrth term o	of 54. Find the first term of the progress	ion
in each of the following cases:	o anu a It		of 54. This the first term of the progress	1011
in each of the following cases.				
(i) the progression is arithmetic, [3]				
		(
(ii) the progression is geometric with a positive common ratio. [3]				[3]
Answer				
(i) $a+d=96$ and $a+3d=54$	B14	Fo	r both expressions.	
$\rightarrow d = -21 \ a = 117$	M		prrect method of solution. co	
· u = 21 u = 117			new memore of solution, we	


$\rightarrow a = -21 \ a = 117$		[3]	(nb no working, d correct, a wrong 0/3)	
(ii) $ar = 96$ and $ar^3 = 54$	B1		For both expressions.	
$\rightarrow r^2 = \frac{54}{96} \rightarrow r = \frac{3}{4}$	M1		Correct method of solution.	
$\rightarrow a = 128$	A1		co. $r = \pm \frac{3}{4}$, no penalty.	
		[3]		9709/12/O/N/09
Outortion 15.				

Question 15:

The first term of an arithmetic progression is 8 and the common difference is d, where $d \neq 0$. The first term, the fifth term and the eighth term of this arithmetic progression are the first term, the second term and the third term, respectively, of a geometric progression whose common ratio is r.

```
(i) Write down two equations connecting d and r. Hence show that r = \frac{3}{4} and find the value of d.
                                                                                                       [6]
(ii) Find the sum to infinity of the geometric progression.
                                                                                                       [2]
(iii) Find the sum of the first 8 terms of the arithmetic progression.
                                                                                                       [2]
```

(i) $8+4d=8r$ $8+7d=8r^2$ Eliminates one of the variables	B1 B1 M1	co - but allow if a in place of 8. co - but allow if a in place of 8. Complete elimination of either r or d.
$\rightarrow 4r^2 - 7r + 3 = 0$ Solution $\rightarrow r = \frac{3}{4} \rightarrow d = -\frac{1}{2}$	DM1 A1 A1 [6]	Correct method of solution. nb answer for r given. co
(ii) $S_{\infty} = \frac{a}{1-r} \rightarrow 32$	M1 A1 [2]	Correct formula used.
(iii) $S_8 = 4(16 + 7d)$ = 50	M1 A1 [2]	Correct formula used. 64 + 28 <i>d</i> ok co
	[4]	9709/11/O/N/09
(b) The first two terms in an arithmet	tic progression	sion with first three terms 0.5, 0.5 ³ and 0.5 ⁵ . [3] are 5 and 9. The last term in the progression is a sum of all the terms in the progression. [4]
Answer		
(a) $a = 0.5, r = 0.5^2$ Uses correct formula = $0.5 \div 0.75$ $\rightarrow S_{z_0} = \frac{2}{3}$ (or 0.667)	B1 M1 A1	[3] For both <i>a</i> and <i>r</i> . Uses correct formula with some <i>a</i> , <i>r</i> . co.
(b) $a=5, d=4$ Uses $200 = a + (n-1)d$ or T.I. 50 terms in the progression Use of correct Sum formula $\rightarrow 5150$	MI A1 MI A1	 Attempt at finding the number of terms. co. Correct formula (could use the last term (201)). co. 9709/01/M/J/09
first term and the common differe	ence.	and the sum of the first 5 terms is 75. Find the [4]
(b) The first term of a geometric prog of the progression.Answer	gression is 16 an	nd the fourth term is $\frac{27}{4}$. Find the sum to infinity [3]
(a) $a + 4d = 18$	B1	co or $75 = 5/2(a + 18) \rightarrow a = 12$ etc
$\frac{5}{2}(2a+4d) = 75$	BI	co
Solution $\rightarrow a = 12, \ d = 1\frac{1}{2}$	M1 A1	[4] Solution of sim equations co for both
(b) $a = 16$ and $ar^3 = \frac{27}{4}$ $r = \frac{3}{4}$	B1	Needs both of these
Sum to infinity = 64	M1 A1	[3] Correct formula and $ r < 1$ 9709/11/O/N/10
Question 18:		

(i) Find the first term and the common difference. [2]
(ii) Find the value of *m* given that the sum of the first *m* terms is equal to the sum of the first (*m*+1) terms. [2]

[2]

(iii) Find the value of *n* given that the sum of the first *n* terms is zero.

(a) $\frac{100}{1-r} = 2000$	мі	Correct formula and attempt to solve
r = 19/20 $ar = 95$	A1 A1√	[3] For 100 × r
(b) (i) $a+2d=90, a+4d=80$ d=-5, a=100	B1B1	[2]
(ii) $a+md=0$ m=20	MI A1	[2] Or use correct sum formula m = 20 with no working scores 2
(iii) $\frac{n}{2}[200 + (n-1)(-5)] = 0$	мі	
<i>n</i> = 41	A1	n = 41 with no working scores 2 Do not penalise $n = 0$
		[2] 9709/13/M/J/

Question 22:

- (a) The first and second terms of an arithmetic progression are 161 and 154 respectively. The sum of the first *m* terms is zero. Find the value of *m*.
 [3]
- (b) A geometric progression, in which all the terms are positive, has common ratio r. The sum of the first n terms is less than 90% of the sum to infinity. Show that $r^n > 0.1$. [3]

Answer

					_
(a)	d = -7 used	B1		co	
	(m/2)[322 + (m-1)(-7)] = 0	M1	0. 1	Condone omission of (m/2). Statement	
	47	A1 🧃		co (condone $m = 0$)	
			[3]		
(b)	$\frac{a(1-r^n)}{c} < \frac{0.9a}{c}$	MI	<u>,</u>	Allow for $=, <, >, \leq, \geq$	
()	1-r $1-r$,,,,_,_	
	$1 - r^n < 0.9$	MI		Needs inequality sign correct	
	$r^{n} > 0.1$				
	r > 0.1	A1		co	
			[3]		9709/12/O/N/1

Question 23:

- (a) The sixth term of an arithmetic progression is 23 and the sum of the first ten terms is 200. Find the seventh term. [4]
- (b) A geometric progression has first term 1 and common ratio r. A second geometric progression has first term 4 and common ratio $\frac{1}{4}r$. The two progressions have the same sum to infinity, S. Find the values of r and S. [3]

Answer				
(a) $a + 5d = 23$	B1		Solution of 2 linear equations	5
5(2a+9d)=200	B1			
Attempt solution, expect $d = 6$ $a = -7$	М1			
29	Al	[4]		
(b) $\frac{1}{1-r} = \frac{4}{1-\frac{1}{4}r}$	МІ		Use of S_{∞} formula twice	
$r = \frac{4}{5} \text{ oc } S = 5$	A1A1	[3]		9709/11/O/N/11

Question 24:

- (a) A geometric progression has a third term of 20 and a sum to infinity which is three times the first term. Find the first term.
- (b) An arithmetic progression is such that the eighth term is three times the third term. Show that the sum of the first eight terms is four times the sum of the first four terms. [4]

Answ	Answer						
(a)	$ar^2 = 20$	B1	со				
	$\frac{a}{1-r} = 3a$	B1	со				
	Soln of equations $\rightarrow (r = \frac{2}{3}) a = 45$	M1 A1 [4]	Complete method to find a. co				
(b)	a + 7d - 2(a + 2d)	M1	Use of $a + (n-1)d$				
(D)	a + 7d = 3(a + 2d) $\rightarrow 2a = d$	Al	· · ·				
			co				
	$S_8 = 4(2a + 7d) = 32d$ or $64a$	M1	correct use of S_n formula once.				
	$S_4 = 2(2a + 3d) = 8d$ or 16a	A1	ag				
		[4]		9709/13/M/J/11			

Question 25:

- (a) A circle is divided into 6 sectors in such a way that the angles of the sectors are in arithmetic progression. The angle of the largest sector is 4 times the angle of the smallest sector. Given that the radius of the circle is 5 cm, find the perimeter of the smallest sector. [6]
- (b) The first, second and third terms of a geometric progression are 2k + 3, k + 6 and k, respectively. Given that all the terms of the geometric progression are positive, calculate
 - (i) the value of the constant k,
 - (ii) the sum to infinity of the progression.

[3] [2]

Answer (a) a + 5d = 4a or $\frac{(a+4a)}{2} \times 6$ B1 $\frac{6}{2}(2a+5d)$ or $\frac{(a+4a)}{2} \times 6 = 360$ Correct left-hand side. All correct. Sim Eqns $a = 24^{\circ}$ or $\frac{2\pi}{15}$ rads A1 Either answer. Arc length = 5θ M1 Correct use of arc length with θ in rads. Perimeter = 12.1. A1 co [6] **(b) (i)** $\frac{k+6}{2k+3} = \frac{k}{k+6}$ M1 A1 Correct eqn for k. $\rightarrow k^2 - 9k - 36 = 0 \rightarrow k = 12$ Co condone inclusion of k = -3. A1 (NB stating a, ar, ar^2 as f(k) gets M1) [3] (ii) $r = \frac{2}{3}$, a = 27Correct formula for S_{∞} must have $\rightarrow S_{\infty} = 27 \div \frac{1}{3} = 81.$ M1 A1 $-1 \le r \le 1$. co. [2] 9709/12/M/J/11

Question 26:

A television quiz show takes place every day. On day 1 the prize money is \$1000. If this is not won the prize money is increased for day 2. The prize money is increased in a similar way every day until it is won. The television company considered the following two different models for increasing the prize money.

Model 1: Increase the prize money by \$1000 each day.

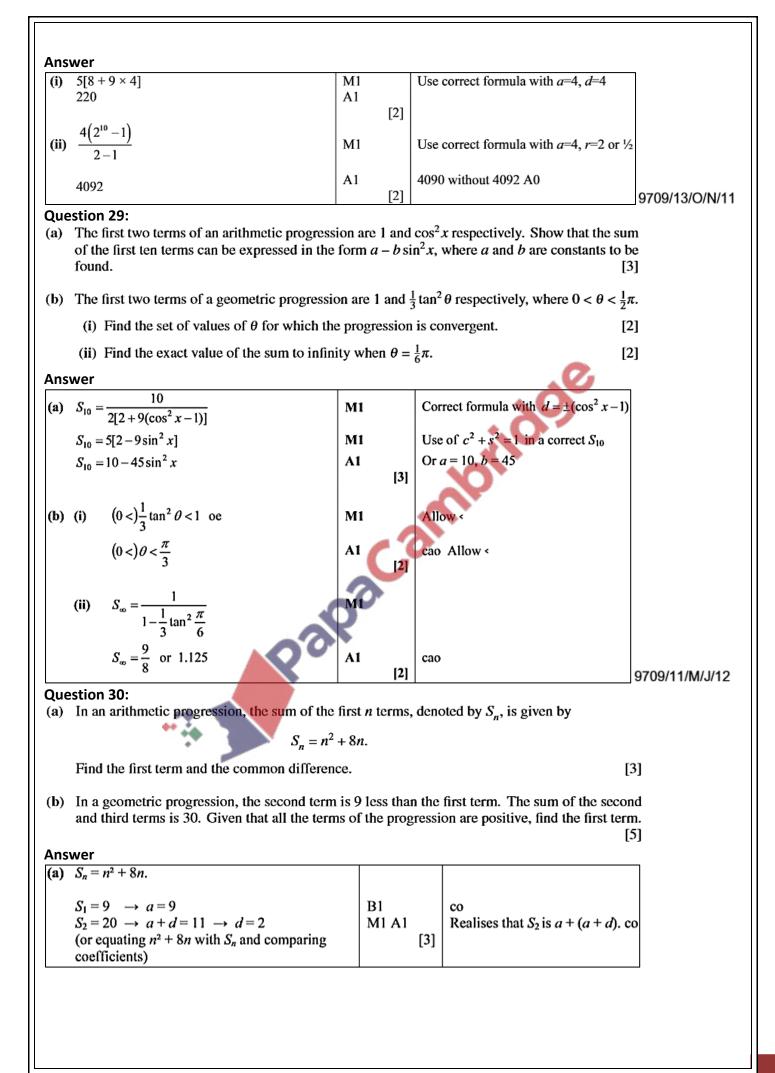
Model 2: Increase the prize money by 10% each day.

On each day that the prize money is not won the television company makes a donation to charity. The amount donated is 5% of the value of the prize on that day. After 40 days the prize money has still not been won. Calculate the total amount donated to charity

[4]

[3]

(i) if Model 1 is used,


(ii) if Model 2 is used.

Ans	wer					
(i)	1000, 2000, 3000 or 50, 100, 150	M1		Recognise series, correc	t a/d (or 3 terms)	
	$\frac{40}{2(1000+40000)}$ or $\frac{40}{2(2000+39000)}$	М1		Correct use of formula		
	× 5% of attempt at valid sum 41000	M1 A1		Can be awarded in eithe cao	r (i) or (ii)	
(ii)	1000, 1000 × 1.1, 1000 × 1.1^2 + or with a	n = 50 M1	[4]	Recognise series, correc	t a/r (or 3 terms)	
	$1000(1.1^{40}-1)$	М1		Correct use of formula.		
	1.1-1 22100	A1	[3]	Or answers rounding to	this	0700/44/04/14
Oue	estion 27:	I			-	9709/11/M/J/1
(a)	An arithmetic progression contains 25 in the progression is 525. Calculate	terms and	the first	term is –15. The sum	of all the terms	
	(i) the common difference of the pro-	gression,		i O	[2]	
	(ii) the last term in the progression,				[2]	
	(iii) the sum of all the positive terms i	n the progr	ession.		[2]	
(b)	A college agrees a sponsorship deal equipment. This grant will be \$4000 i					
	(i) the value of the grant in 2022,		63	2	[2]	
	(ii) the total amount the college will	receive in t	he years	2012 to 2022 inclusive	e. [2]	
-	wer		7			
(a)	a = -15, n = 25 (i) Use of $S_n \rightarrow d = 3.$	MLAI	Must b	e correct formula. co		
	(ii) Last term = $a + 24d$	[2] M1	Must h	e <i>a</i> + 24 <i>d</i>		
	(ii) Distribution $d = 2 t d$ $\rightarrow 57$ (or $525 = \frac{1}{2} \times 25 \times (-15 + 1) \rightarrow l = 57$)	A1√ [2]	√ for h			
	(iii) Positive terms are 3,6,57 Either $a = 0$ or 3, $n = 19$ or 20	М1	Correct	use of formula for S _n .		
	Use of S_{19} or S_{20} $\rightarrow 570$	A1	со			
		[2]				
(b)	<i>r</i> = 1.05	[2] B1	In eithe	er part (i) or (ii).		
(b)	r = 1.05 (i) $11^{\text{th}} \text{ term} = ar^{10} = \$6516 \text{ or } \$6520$		In eithe co	er part (i) or (ii).		

The first and second terms of a progression are 4 and 8 respectively. Find the sum of the first 10 terms given that the progression is

(i) an arithmetic progression,	[2]
(ii) a geometric progression.	[2]

10

(b) $a - ar = 9$	B1		co			
$ar + ar^2 = 30$	B1		co			
Eliminates $a \rightarrow 3r^2 + 13r - 10 = 0$	M1		Comple	te elimination of r or a		
or $\rightarrow 2a^2 - 57a + 81 = 0$			Correct	quadratic.		
$\rightarrow r = \frac{2}{3}$	A1					
$\rightarrow a = 27$	A1	[5]	co (con	done 27 or 1.5)		
		[3]			9709/12/M/J/12	
Question 31: The first term of an arithmetic progression is 12 and	nd the sun	n of the	first 9 te	rms is 135.		
(i) Find the common difference of the progression	on.			[2]		
The first term, the ninth term and the <i>n</i> th term of second term and the third term respectively of a ge				on are the first term, the		
(ii) Find the common ratio of the geometric progr	ression ar	nd the va	alue of <i>n</i> .	[5]		
Answer						
(i) Uses S_n				.0,		
$\frac{9}{2}(24+8d) = 135 \rightarrow d = \frac{3}{4}$	M1			ct formula		
2(211,02), 100, 10, 10, 10, 10, 10, 10, 10, 10, 1	A1	[2]	0			
	B1√ [*]		on " <i>d</i> "			
(ii) 9^{th} term of AP = $12 + 8 \times \frac{3}{4} = 18$ GP 1^{st} tern 12, 2^{nd} term 18	DIT	1	on u			
Common ratio = $r = 18 \div 12 = 1\frac{1}{2}$	M1		lses "ar"			
$3^{\rm rd}$ term of GP = $ar^2 = 27$	M1	U	Uses ar^2 o	$r ar' \times r$		
nth term of AP is $12 + (n-1)^{3/4}$	M1A1		inks AP y	with GP. co		
$12 + (n-1)\frac{3}{4} = 27 \rightarrow n = 21$		[5]		9709/13/M/J/	12	
Question 32: The first term of a geometric progression is $5\frac{1}{3}$ and	I the fourt	th term i	is 2 <u>1</u> . Fir			
(i) the common ratio,	50		·	[3]	I	
(ii) the sum to infinity.	5			[2]	l	
Answer						
(i) $2\frac{1}{4}=5\frac{1}{3}r^3$	M	1 A1				
$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ \end{array}$						
$r^{3} = \frac{9}{4} \times \frac{3}{16} = \frac{27}{64}$ r = $\frac{3}{4}$ or 0.75						
$r = \frac{3}{4}$ or 0.75	A	1 [3	3]			
(ii) $S_{\infty} = \frac{5\frac{1}{3}}{1-\frac{3}{2}} = \frac{64}{3}$ (or $21\frac{1}{3}$ or 21.3)	м	1 A 1	cao			
$1 - \frac{3}{4} - $			_	9709/13/O/N/12		
[2] 9709/13/O/N/12 Question 33:						
Question 33:						
Question 33: The first term of an arithmetic progression is 61	and the s	second	term is 5	7. The sum of the first	:	
-		second	term is 5	7. The sum of the first [4]		
The first term of an arithmetic progression is 61		second	term is 5			

	[4]		9709/11/O/N/12
n = 31	A1	cao	
	DM1	Attempt to solve. Accept div. by <i>n</i>	
2n(n-31) = 0			
$n = \frac{n}{2}[122 + (n-1)(-4)]$	A1	Equated to <i>n</i> cao	
$\frac{n}{2}[122 + (n-1)(-4)]$	M1	Attempt sum formula with $a = 61, d = -4$	

Question 34:

(a) In a geometric progression, all the terms are positive, the second term is 24 and the fourth term is 13¹/₂. Find

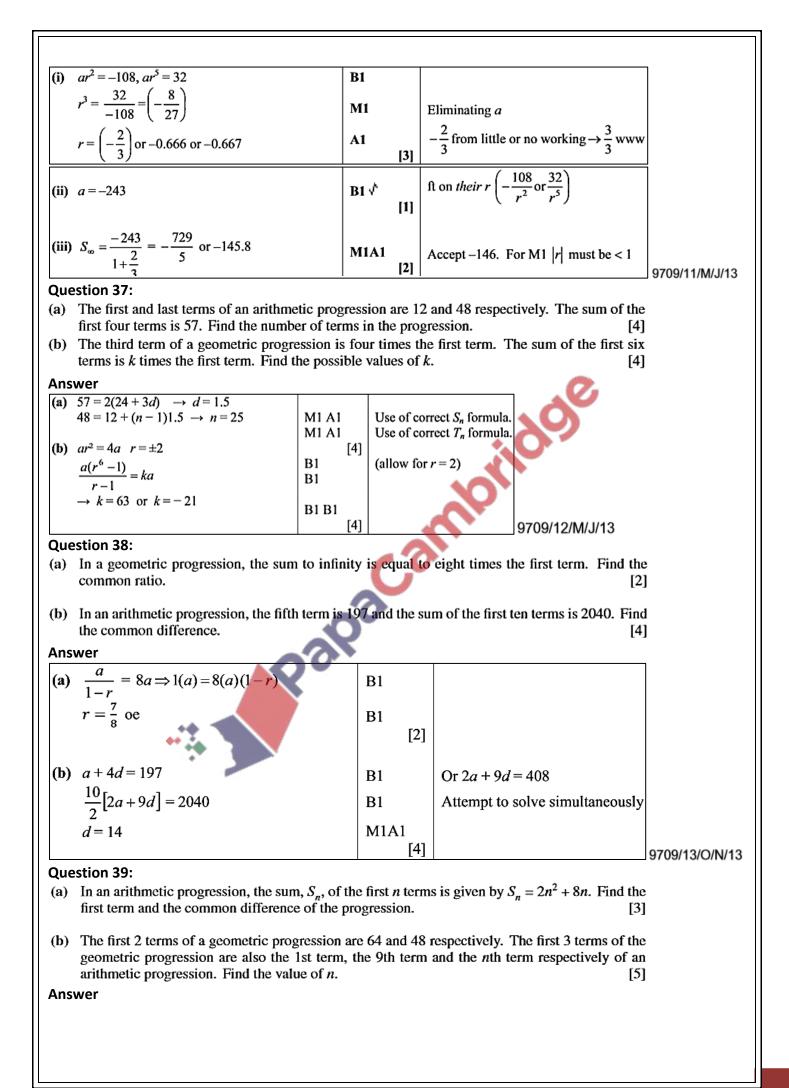
(i) the first term,	[3]
(ii) the sum to infinity of the progression.	[2]

(b) A circle is divided into n sectors in such a way that the angles of the sectors are in arithmetic progression. The smallest two angles are 3° and 5°. Find the value of n. [4]

Answer

(a)	(i)	$ar = 24, ar^3 = 13\frac{1}{2}$		
		Eliminates a (or r) $\rightarrow r = \frac{3}{4}$	B1	Both needed
		$\rightarrow a = 32$	M1	Method of Solution.
			A1	co
			[3]	
	(ii)	sum to infinity = $32 \div \frac{1}{4} = 128$		
			M1A1√	Correct formula used. \checkmark on value of r
			[2]	
(b)	a =	3, $d=2$	B1	Correct value for d
	$\frac{n}{-}$	6 + (n-1)2) (= 360)	М1	Correct S_n used. no need for 360 here.
			IVII	Correct S _n used. no need for 500 nere.
	\rightarrow	$2n^2 + 4n - 720 = 0$	A1	Correct quadratic
	\rightarrow	<i>n</i> = 18	A1	co
			[4]	🐟 🔘 🔰 9709/12/O/N/12

Question 35:


- (a) In an arithmetic progression the sum of the first ten terms is 400 and the sum of the next ten terms is 1000. Find the common difference and the first term. [5]
- (b) A geometric progression has first term a, common ratio r and sum to infinity 6. A second geometric progression has first term 2a, common ratio r^2 and sum to infinity 7. Find the values of a and r. [5]

Ansv	wer			
(a)	$\frac{10}{2}(2a+9d) = 400$ oe	BI	$\rightarrow 2a + 9d = 80$	
	$\frac{20}{2}(2a+19d) = 1400 \text{ OR}$	K		
	$\frac{10}{2}[2(a+10d)+9d]=1000$	B1	$\rightarrow 2a + 19d = 140 \text{ or } 2a + 29d = 200$	
	d = 6 $a = 13$	M1A1A1	Solve sim. eqns both from S_n	
		[5]	formulae	
(b)	$\frac{a}{1-r} = 6 \qquad \qquad$	B1B1		
	$\frac{12(1-r)}{1-r^2} = 7 \text{or} \frac{1-r^2}{1-r} = \frac{12}{7}$	M1	Substitute or divide	
	$r = \frac{5}{7}$ or 0.714	A1		
	$a = \frac{12}{7}$ or 1.71(4)	A1∜ [5]	Ignore any other solns for r and a	
	,	[5]		9709/11/O/N/13

Question 36:

The third term of a geometric progression is -108 and the sixth term is 32. Find

(i) the common ratio,	[3]
(ii) the first term,	[1]
(iii) the sum to infinity.	[2]
Answer	

					_
(a)	$S_n = 2n^2 + 8n$				
	$S_1 = 10 = a$	В1			
	$S_2 = 24 = a + (a + d) d = 4$	M1 A1	[3]	correct use of S _n formula.	
(b)	$GP a = 64 ar = 48 \rightarrow r = \frac{3}{4}$	B1			
	\rightarrow 3rd term is $ar^2 = 36$	мı		ar^2 numerical – for their r	
	AP $a = 64$, $a + 8d = 48 \rightarrow d = -2$	B1			
	36 = 64 + (n-1)(-2)	мı		correct use of $a+(n-1)d$	
	\rightarrow <i>n</i> = 15.	A1	[5]		9709/13/M/J/13

Question 40:

- (a) An athlete runs the first mile of a marathon in 5 minutes. His speed reduces in such a way that each mile takes 12 seconds longer than the preceding mile.
 - (i) Given that the *n*th mile takes 9 minutes, find the value of *n*.
 - (ii) Assuming that the length of the marathon is 26 miles, find the total time, in hours and minutes, to complete the marathon. [2]
- (b) The second and third terms of a geometric progression are 48 and 32 respectively. Find the sum to infinity of the progression. [4]

Answer

						_
(a)	(i)	a = 300, d = 12				
		$\rightarrow 540 = 300 + (n-1)12 \rightarrow n =$	21 M	IA1 Use	of <i>n</i> th term. Ans 20 gets 0.	
				[2] Igno	ore incorrect units	
	(ii)	$S_{26} = 13 (600 + 25 \times 12) = 11700$	M	Corr	rect use of <i>s_n</i> formula.	
		\rightarrow 3 hours 15 minutes.	Al			
				[2]		
(b)	ar =	= 48 and $ar^2 = 32 \rightarrow r = \frac{2}{3}$	M	Need	ds ar and ar^2 + attempt at a and a	r.
` ´		<i>a</i> =72.	A1		•	
	S_{m}	$= 72 \div \frac{1}{3} = 216.$	M	l Corr	rect S_{∞} formula with $ \mathbf{r} < 1$	
			A1			
				[4]		0700/40/0/0/0/0/0/
						9709/12/O/N/13

Question 41:

- (a) The sum, S_n , of the first *n* terms of an arithmetic progression is given by $S_n = 32n n^2$. Find the first term and the common difference. [3]
- (b) A geometric progression in which all the terms are positive has sum to infinity 20. The sum of the first two terms is 12.8. Find the first term of the progression. [5]

Answer

(a)	$S_n = 32n - n^2.$		
	Set <i>n</i> to 1, <i>a</i> or $S_1 = 31$	B1	co
	Set <i>n</i> to 2 or other value $S_2 = 60$		
	\rightarrow 2nd term = 29 \rightarrow d = -2	M1 A1	Correct method.
	(or equates formulae – compares		со
	coeffs n^2 , n)	[3]	
	[M1 comparing, A1 d A1 a]		[M1 only when coeffs compared]

[2]

			_
(b) $\frac{a}{1-r} = 20$, $\frac{a(1-r)^2}{1-r}$, or $a + ar = 12.8$	B1 B1	со со	
Elimination of $\frac{a}{1-r}$ or a or r	M1	'Correct' elimination to form equation in <i>a</i> or <i>r</i>	
\rightarrow (r = 0.6) \rightarrow a = 8	DM1 A1 [5]	Complete method leading to $a =$ Condone $a = 8$ and 32	9709/12/O/N/14

Question 42:

(i) A geometric progression has first term $a (a \neq 0)$, common ratio r and sum to infinity S. A second geometric progression has first term a, common ratio 2r and sum to infinity 3S. Find the value of r. [3]

(ii) An arithmetic progression has first term 7. The *n*th term is 84 and the (3*n*)th term is 245. Find the value of *n*.

Answer

				_
(i)	$S = \frac{a}{1-r}, 3S = \frac{a}{1-2r}$	B1	At least $3S = \frac{a}{1-2r}$	
	1-r=3-6r	M1	Eliminate S	
	$r=\frac{2}{5}$	A1		
		[3]		
(ii)	7 + (n-1)d = 84 and/or $7 + (3n-1)d = 245$	B1	At least one of these equations seen	
	[(n-1)d = 77, (3n-1)d = 238, 2nd = 161]	B1	Two different seen – unsimplified ok	
	$\frac{n-1}{3n-1} = \frac{77}{238}$ (must be from the correct u _n formula)	M1	Or other attempt to elim d. E.g. sub $d = \frac{161}{2n}$	
			(if <i>n</i> is eliminated <i>d</i> must be found)	
	$n = 23 (d = \frac{77}{22} = 3.5)$	A1		
	22 	[4]		9709/11/O/N/14

Question 43:

The 1st, 2nd and 3rd terms of a geometric progression are the 1st, 9th and 21st terms respectively of an arithmetic progression. The 1st term of each progression is 8 and the common ratio of the geometric progression is r, where $r \neq 1$. Find

- (i) the value of r,
- (ii) the 4th term of each progression.

Answer

9709/12/M/J/14

Question 44:

Three geometric progressions, P, Q and R, are such that their sums to infinity are the first three terms respectively of an arithmetic progression.

Progression *P* is 2, 1, $\frac{1}{2}$, $\frac{1}{4}$, Progression *Q* is 3, 1, $\frac{1}{3}$, $\frac{1}{9}$,

(i) Find the sum to infinity of progression R.

(ii) Given that the first term of R is 4, find the sum of the first three terms of R.

[3]

[3]

[4]

[3]

Ans	wer				
(i)	$S_p = \frac{2}{1 - \frac{1}{2}}, S_p = \frac{3}{1 - \frac{1}{3}}$	М1	At least one correct		
	$S_{p} = 4, S_{Q} = \frac{9}{2}$	A1	At least one correct		
	$S_R = 5$ cao	A1 [3]			
(ii)	$\frac{4}{1-r} = their S_R$	М1			
	$r = \frac{1}{5}$	A1			
	$R = 4 + \frac{4}{5} + \frac{4}{25} = 4\frac{24}{25} \text{ or } 4.96 \text{ cao}$	A1 [3]		9709/13/O/N/14	
Que	stion 45:	•			
first (i)	 arithmetic progression has first term a and conduct 200 terms is 4 times the sum of the first 100 to Find d in terms of a. Find the 100th term in terms of a. 			[3] [2]	
	$200/2(2a + 199d) = 4 \times 100/2(2a + 99d)$	M1A1	Correct formula use	d (once) M1, correct]
	d=2a cao	A1 [3]	eqn Al		
(ii)	$\begin{array}{l}a + 99d = a + 99 \times 2a\\199a \text{cao}\end{array}$		Sub. <i>their</i> part(i) int	o correct formula	9709/11/M/J/14
The (i) (ii) Ans		the sum to in	-	[2] the progression if [3]	1
36, (i)	32, $r = \frac{8}{9} S_{\infty} = (their a) \div (1 - their r)$	M1	Method for r and	S_{∞} ok. (r < 1)	
	$S_{\infty} = 36 \div \frac{1}{9} = 324$	A1	со		
	2	[2]			
			1		1

(ii) d = -4B1co $0 = \frac{n}{2} (72 + (n-1)(-4))$ M1 S_n formula ok and a value for $d \ (\neq \frac{8}{9})$ $\rightarrow n = 19$ A1Condone n = 0 but no other soln

9709/13/M/J/14

Question 47:

The first term of a progression is 4x and the second term is x^2 .

- (i) For the case where the progression is arithmetic with a common difference of 12, find the possible values of x and the corresponding values of the third term. [4]
- (ii) For the case where the progression is geometric with a sum to infinity of 8, find the third term.

[4]

۹nsv	ver		
(i)	$x^2 - 4x = 12$	M1	$4x - x^2 = 12$ scores M1A0
	x = -2 or 6	A1	
	3^{rd} term = $(-2)^2 + 12 = 16$ or $6^2 + 12 = 48$	A1A1 [4]	SC1 for 16, 48 after $x = 2, -6$
(ii)	$r^2 = \frac{x^2}{4x} \left(= \frac{x}{4} \right) \text{ soi}$	M1	
	$\frac{4x}{1-\frac{x}{4}} = 8$	М1	Accept use of unsimplified
	$1 - \frac{1}{4}$		$\frac{x^2}{4x}$ or $\frac{4x}{x^2}$ or $\frac{4}{x}$
	$x = \frac{4}{3}$ or $r = \frac{1}{3}$	A1	$4x x^2 x$
	3^{rd} term = $\frac{16}{27}$ (or 0.593)	A1 [4]	
		[[4]	
	ALT		
	$\frac{4x}{1-r} = 8 \to r = 1 - \frac{1}{2}x \text{ or } \frac{4x}{1-r} = 8 \to x = 2(1-r)$	M1	0
	$x^{2} = 4x \left(1 - \frac{1}{2}x\right)$ $r = \frac{2(1 - r)}{4}$	М1	0
	$x=\frac{4}{3}$ $r=\frac{1}{3}$	A1	9709/11/O/N

Question 48:

(a) The third and fourth terms of a geometric progression are ¹/₃ and ²/₉ respectively. Find the sum to infinity of the progression. [4]

(b) A circle is divided into 5 sectors in such a way that the angles of the sectors are in arithmetic progression. Given that the angle of the largest sector is 4 times the angle of the smallest sector, find the angle of the largest sector. [4]

Answer

Allswei				
(a)	$ar^2 = \frac{1}{3}$, $ar^3 = \frac{2}{9}$			
	$\rightarrow r = \frac{2}{3}$ aef	М1	Any valid method, seen or implied. Could be answers only.	
	Substituting $\rightarrow a = \frac{3}{4}$	A1	Both <i>a</i> and <i>r</i>	
	$\rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4}$ aef	M1 A1 [4]	Correct formula with $ r < 1$, cao	
(b)	$4a = a + 4d \rightarrow 3a = 4d$	B1	May be implied in 360 = 5/2(a+4a)	
	$360 = S_5 = \frac{5}{2}(2a+4d)$ or 12.5a	М1	Correct S_n formula or sum of 5 terms	
	$\rightarrow a = 28.8^{\circ}$ aef Largest = $a + 4d$ or $4a = 115.2^{\circ}$ aef	A1 B1	cao, may be implied (may use degrees or radians)	
		[4]		9709/11/M/J/15

Question 49:

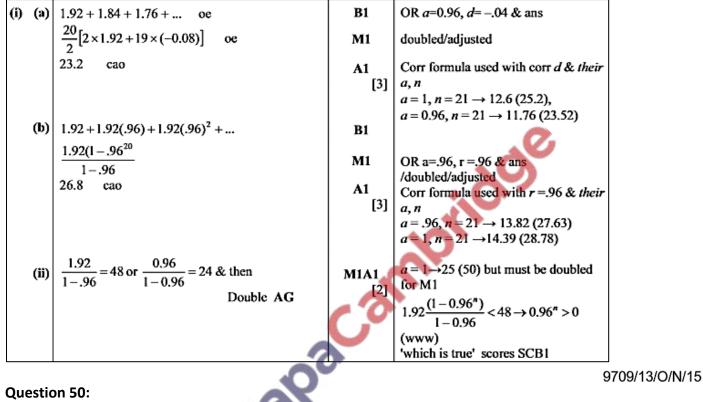
A ball is such that when it is dropped from a height of 1 metre it bounces vertically from the ground to a height of 0.96 metres. It continues to bounce on the ground and each time the height the ball reaches is reduced. Two different models, A and B, describe this.

Model A: The height reached is reduced by 0.04 metres each time the ball bounces.

Model B: The height reached is reduced by 4% each time the ball bounces.

(i) Find the total distance travelled vertically (up and down) by the ball from the 1st time it hits the ground until it hits the ground for the 21st time,

[3]


[3]

[2]

(b) using model B.

(ii) Show that, under model B, even if there is no limit to the number of times the ball bounces, the total vertical distance travelled after the first time it hits the ground cannot exceed 48 metres.

- (a) The first term of an arithmetic progression is -2222 and the common difference is 17. Find the value of the first positive term. [3]
- (b) The first term of a geometric progression is $\sqrt{3}$ and the second term is $2\cos\theta$, where $0 < \theta < \pi$. Find the set of values of θ for which the progression is convergent. [5]

Answ	ver 🧌 🐪 🔪			_
(a)	2222/17 (=131 or 130.7) 131 × 17 (=2227) -2222 + 2227 = 5	M1 M1 A1 [3]	Ignore signs. Allow 2239/17→131.7 or 132 Ignore signs. Use 131. 5 www gets 3/3	
(b)	$r = \frac{2\cos\theta}{\sqrt{3}}$ soi oe	B1		
	$(-1<)\frac{2\cos\theta}{\sqrt{3}}<1$ or $(0<)\frac{2\cos\theta}{\sqrt{3}}<1$ soi	М1√	Ft on <i>their r</i> . Ignore a 2nd inequality on LHS	
	$\pi/6, 5\pi/6$ soi (but dep. on M1)	A1A1	Allow 30°, 150°.	
	$\pi/6 < \theta < 5\pi/6$ cao	A1	Accept ≤	
		[5]		9709/13/M/J/15

Question 51:

A water tank holds 2000 litres when full. A small hole in the base is gradually getting bigger so that each day a greater amount of water is lost.

(i) On the first day after filling, 10 litres of water are lost and this increases by 2 litres each day.

- (a) How many litres will be lost on the 30th day after filling?
- (b) The tank becomes empty during the *n*th day after filling. Find the value of *n*. [3]

[2]

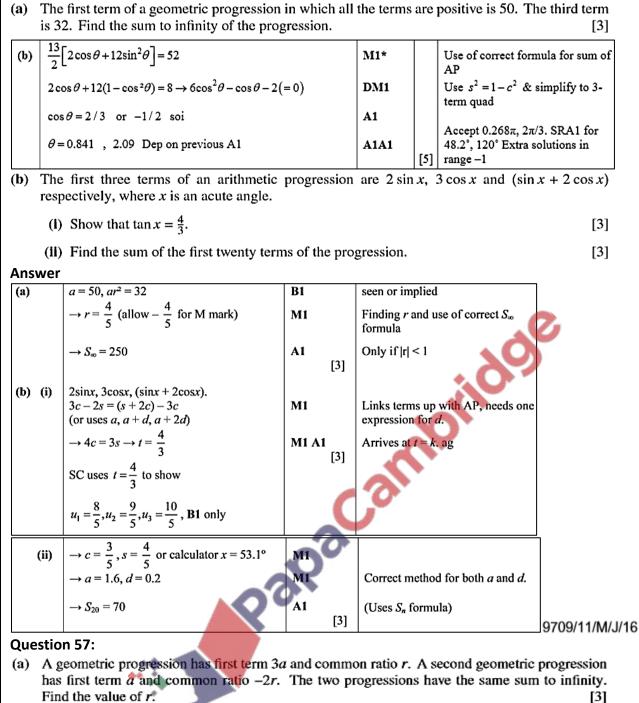
(ii) Assume instead that 10 litres of water are lost on the first day and that the amount of water lost increases by 10% on each succeeding day. Find what percentage of the original 2000 litres is left in the tank at the end of the 30th day after filling.

Answer

						7
(i)	(a)	$a + (n-1)d = 10 + 29 \times 2$	M1		Use of <i>n</i> th term of an AP with a=±10, d=±2, n=30 or 29	
		= 68	A1		Condone – $68 \rightarrow 68$	
				[2]		
	(b)	$\frac{1}{2}n(20+2(n-1)) = 2000 \text{ or } 0$	M1		Use of S _n formula for an AP with	
					a=±10, d=±2 and equated to either	
					0 or 2000.	
		$\rightarrow 2n^2 + 18n - 4000 = 0$ oe	A1		Correct 3 term quadratic = 0.	
		(n=) 41	A1	[3]	.0,	
(ii)		<i>r</i> = 1.1, oe	B1		e.g. $\frac{11}{10}$, 110%	
		$10(1,1^{30}-1)$				
		Uses $S_{30} = \frac{10(1.1^{30} - 1)}{1.1 - 1}$ (= 1645)	M1		Use of S_n formula for a GP, a=±10,	
		1.1-1		1	n=30.	
		$P_{arcontage 1est} = \frac{2000 - 1645}{100}$	DM1	1	Fully correct method for % left	
		$Percentage lost = \frac{2000 - 1645}{2000} \times 100$		2	with "their 1645"	
		= 17.75	AI		allow 17.7 or 17.8.	
				[4]		9709/12/M/J/16
Oue	stion	152·	1			

Question 52:

The 1st, 3rd and 13th terms of an arithmetic progression are also the 1st, 2nd and 3rd terms respectively of a geometric progression. The first term of each progression is 3. Find the common difference of the arithmetic progression and the common ratio of the geometric progression. [5]


Answer

$r = \frac{3+2d}{3} \operatorname{or} \frac{3+12d}{3+2d}$ or $r^2 = \frac{3+12d}{3}$	B1	1 correct equation in <i>r</i> and <i>d</i> only is sufficient	
$(3+2d)^2 = 3(3+12d)$ oc OR	M1	Eliminate r or d using valid method	
sub $2d = 3r - 3$ (4)d(d-6) = 0 OR $3r^2 = 18r - 15 \rightarrow (r-1)(r-5)$	DM1	Attempt to simplify and solve quadratic	
<i>d</i> = 6 <i>r</i> = 5	A1 A1 [5]	Ignore $d = 0$ or $r = 1$ Do not allow -5 or ± 5	9709/13/M/J/16

Question 53:

The sum of the 1st and 2nd terms of a geometric progression is 50 and the sum of the 2nd and 3rd terms is 30. Find the sum to infinity. [6]

a(1+r	$= 50 \text{ or } \frac{a(1-r^2)}{1-r} = 50$		B1					
ar(1+)	$ = 50 \text{ or } \frac{a(1-r^2)}{1-r} = 50 $ $ r) = 30 \text{ or } \frac{a(1-r^3)}{1-r} = 30 + a $		B1			otherwise attempt to a	solve	
Elimina	ating a or r		M1		for Any	r v correct method		
r = 3/3 a = 125			A1 A1					
<i>S</i> = 62:	5/8 oe		A1√	[6]		hrough on their r and $< r < 1$))/11/O/N/16
Questi (a) A	on 54: cyclist completes a long-distance cha	rity event	t across A	frica '	The	total distance is 305	0 km	
He	e starts the event on May 1st and cycluces the distance cycled by 5 km.							
(1) How far will he travel on May 15th	?					[2]	
(ii) On what date will he finish the even	nt?					[3]	
	geometric progression is such that the st six terms is $31\frac{1}{2}$. Find	third ter	m is 8 tim	nes the	sixth	term, and the sum	of the	
(1) the first term of the progression,						[4]	
(ii) the sum to infinity of the progression	on.				10	[1]	
Answe	-	244			- .1 .		14 15	ิ
(a) (i)	200+(15-1)(+/-5)	M1		d = +/4		erm with $a = 200, n =$	14 or 15an	1
	= 130	A1	[2]					
(ii)	$\frac{n}{2} \left[400 + (n-1)(+/-5) \right] = (3050)$	M1	C	Use of	S _n a	=200 and $d = +/-5$.		
	$ \rightarrow 5n^2 - 405n + 6100 \ (= 0) \rightarrow 20 $	A1 A1	[3]					
(b) (i)		M1 A	1	Both t	erms	correct.		
	$\frac{63}{2} = \frac{a(1 - \frac{1}{2})}{\frac{1}{2}} \to a = 16$	M1 A	[4]	Use of	$S_n =$	31.5 with a numeric <i>r</i> .		
(ii)	Sum to infinity = $\frac{16}{\frac{1}{2}}$ = 32	B1√	[1]	√ for t	heir a	and r with $ r < 1$.		9709/12/O/N/16
Questi								_
 (a) Two convergent geometric progressions, P and Q, have the same sum to infinity. The first and second terms of P are 6 and 6r respectively. The first and second terms of Q are 12 and -12r respectively. Find the value of the common sum to infinity. [3] 								
	the first term of an arithmetic progres $\leqslant \theta \leqslant \pi$. The sum of the first 13 term						$^{2}\theta$, where [5]	
Answe	r					1		-
(a) <u>-</u> 1	$\frac{6}{-r} = \frac{12}{1+r}$		М	[1				
	$=\frac{1}{3}$		A					
S	7 = 9		A	1	[3]			
I			I			1		_J
9709/13/ Questi								

- Find the value of r?
- (b) The first two terms of an arithmetic progression are 15 and 19 respectively. The first two terms of a second arithmetic progression are 420 and 415 respectively. The two progressions have the same sum of the first *n* terms. Find the value of *n*. [3]

Answer	•
--------	---

(i)	$\frac{3a}{1-r} = \frac{a}{1+2r}$	MI	Attempt to equate 2 sums to infinity. At least one correct
	3 + 6r = 1 - r	DM1	Elimination of 1 variable (a) at any stage and multiplication
	$r = -\frac{2}{7}$	Al	
		3	
(ii)	$\frac{1}{2}n[2 \times 15 + (n-1)4] = \frac{1}{2}n[2 \times 420 + (n-1)(-5)]$	MIA1	Attempt to equate 2 sum to n terms, at least one correct (M1). Both correct (A1)
	<i>n</i> = 91	Al	
		3	

Question 58:

- (a) Each year, the value of a certain rare stamp increases by 5% of its value at the beginning of the year. A collector bought the stamp for \$10 000 at the beginning of 2005. Find its value at the beginning of 2015 correct to the nearest \$100.
- (b) The sum of the first *n* terms of an arithmetic progression is $\frac{1}{2}n(3n+7)$. Find the 1st term and the common difference of the progression. [4]

Question Marks Guidance Answer Uses $r = (1.05 \text{ or } 105\%)^{9, 10 \text{ or } 11}$ Bl Used to multiply repeatedly or in any GP formula. (a) New value = $10000 \times 1.05^{10} = ($)16300$ Bl 2 (b) EITHER: **(B1** Uses n = 1 to find a $n = 1 \rightarrow 5$ a=5 $n = 2 \rightarrow 13$ B1 Correct S_n for any other value of n (e.g. n = 2) $a + (a + d) = 13 \rightarrow d = 3$ MIAI) Correct method leading to d =OR $\left(\frac{n}{2}\right)$ maybe be ignored $\left(\frac{n}{2}\right)\left(2a+(n-1)d\right) = \left(\frac{n}{2}\right)\left(3n+7\right)$ (*MIAI Method mark awarded for equating terms in n from correct Sn $\therefore dn + 2a - d = 3n + 7 \rightarrow dn = 3n \rightarrow d = 3$ formula. DMI AI) $2a - (their 3) = 7, \quad a = 5$ 4 9709/12/O/N/17

Question 59:

An arithmetic progression has first term -12 and common difference 6. The sum of the first *n* terms exceeds 3000. Calculate the least possible value of *n*. [4]

Answer

(a)	$(S_n =) \frac{n}{2} [32 + (n-1)8]$ and 20000	M1	M1 correct formula used with d from $16 + d = 24$
		Al	A1 for correct expression linked to 20000.
	$\rightarrow n^2 + 3n - 5000 (<, => 0)$	DM1	Simplification to a three term quadratic.
	\rightarrow (<i>n</i> = 69.2) \rightarrow 70 terms needed.	Al	Condone use of 20001 throughout. Correct answer from trial and improvement gets 4/4.

Question 60:

- (a) An arithmetic progression has a first term of 32, a 5th term of 22 and a last term of -28. Find the sum of all the terms in the progression. [4]
- (b) Each year a school allocates a sum of money for the library. The amount allocated each year increases by 2.5% of the amount allocated the previous year. In 2005 the school allocated \$2000. Find the total amount allocated in the years 2005 to 2014 inclusive. [3]

9709/13/O/N/17

Answer

Question	Answer	Marks	Guidance
(a)	$a = 32, a + 4d = 22, \rightarrow d = -2.5$	B1	
	$a + (n-1)d = -28 \rightarrow n = 25$	B1	
	$S_{25} = \frac{25}{2} (64 - 2.5 \times 24) = 50$	MI A1	M1 for correct formula with $n = 24$ or $n = 25$
	Total:	4	
(b)	<i>a</i> = 2000, <i>r</i> = 1.025	Bl	$r = 1 + 2.5\%$ ok if used correctly in S_n formula
	$S_{10} = 2000(\frac{1.025^{10} - 1}{1.025 - 1}) = 22400$ or a value which rounds to this	MI A1	M1 for correct formula with $n = 9$ or $n = 10$ and their a and r
			SR: correct answer only for $n = 10$ B3, for $n = 9$, B1 (£19 900)
	Total:	3	

Question 61:

- (a) The first two terms of an arithmetic progression are 16 and 24. Find the least number of terms of the progression which must be taken for their sum to exceed 20 000. [4]
- (b) A geometric progression has a first term of 6 and a sum to infinity of 18. A new geometric progression is formed by squaring each of the terms of the original progression. Find the sum to infinity of the new progression. [4]

Answer:

((b)	$a = 6, \ \frac{a}{1-r} = 18 \ \rightarrow r = \%$	MIA1	Correct $S\infty$ formula used to find r .
		New progression $a = 36$, $r = \frac{4}{9}$ oe	M	Obtain new values for a and r by any valid method.
		New $S\infty = \frac{36}{1 - \frac{4}{9}} \to 64.8 \text{ or } \frac{324}{5} \text{ oe}$	Al	(Be aware that $r = -\frac{3}{3}$ leads to 64.8 but can only score M marks)
		Total:	4	
				9709/12/M/J/17

Question 62:

The common ratio of a geometric progression is r. The first term of the progression is $(r^2 - 3r + 2)$ and the sum to infinity is S.

- (i) Show that S = 2 r.
- (ii) Find the set of possible values that S can take.

Answer:

(ii)	Single range $1 < S < 3$ or $(1, 3)$	B2	Accept $1 < 2 - r < 3$.
			Correct range but with $S = 2$ omitted scores SR B1 $1 \le S \le 3$ scores SR B1 .
			[S > 1 and S < 3] scores SR B1 .
	$\frac{1-r}{(1-r)(2-r)} = 2-r \text{ OE}$		oc snown

9709/13/M/J/17

[2]

9709/11/M/J/17

Question 63:

- (a) A geometric progression has a second term of 12 and a sum to infinity of 54. Find the possible values of the first term of the progression. [4]
- (b) The *n*th term of a progression is p + qn, where p and q are constants, and S_n is the sum of the first n terms.

- (i) Find an expression, in terms of p, q and n, for S_n .
- (ii) Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q.

Answer

Question	Answer	Marks	Guidance
8(a)	$ar = 12$ and $\frac{a}{1-r} = 54$	Bl Bl	CAO, OE CAO, OE
	Eliminates <i>a</i> or $r \to 9r^2 - 9r + 2 = 0$ or $a^2 - 54a + 648 = 0$	м	Elimination leading to a 3-term quadratic in a or r
	$\rightarrow r = \frac{2}{3} \text{ or } \frac{1}{3} \text{ hence to } a \rightarrow a = 18 \text{ or } 36$	Al	Needs both values.
		4	
8(b)	<i>n</i> th term of a progression is $p + qn$		
8(b)(i)	first term = $p + q$. Difference = q or last term = $p + qn$	Bl	Need first term and, last term or common difference
	$S_n = \frac{n}{2} (2(p+q) + (n-1)q) \text{ or } \frac{n}{2} (2p+q+nq)$	MIA1	Use of S_n formula with their a and d . ok unsimplified for A1.
		3	
8(b)(ii)	Hence $2(2p+q+4q) = 40$ and $3(2p+q+6q) = 72$	DMI	Uses their S, formula from (i)
	Solution $\rightarrow p = 5$ and $q = 2$ [Could use S_n with a and $d \rightarrow a = 7$, $d = 2 \rightarrow p = 5$, $q = 2$.]	Al	Note: answers 7, 2 instead of 5, 2 gets M1A0 – mu attempt to solve for M1

Question 64:

The common ratio of a geometric progression is 0.99. Express the sum of the first 100 terms as a percentage of the sum to infinity, giving your answer correct to 2 significant figures. [5]

Answer

Answer	Marks	Guidance
$\left[\frac{a(1-r^n)}{1-r}\right][+]\left[\frac{a}{1-r}\right]$	мімі	Correct formulae <u>used</u> with/without $r = 0.99$ or $n = 100$.
0360	DM1	Allow numerical <i>a</i> (M1M1). 3rd M1 is for division $\frac{S_n}{S_{\infty}}$ (or ratio) SOI
$1 - 0.99^{100}$ SOI OR $\frac{63(a)}{100(a)}$ SOI	A1	Could be shown multiplied by 100(%). Dep. on DM1
63(%) Allow 63.4 or 0.63 but not 2 infringements (e.g. 0.634, 0.63%)	A1	$n = 99$ used scores Max M3. Condone $a = 0.99$ throughout $S_n = S_{\infty}$ (without division shown) scores 2/5
		9709/13/M/J/18

Question 65:

A company producing salt from sea water changed to a new process. The amount of salt obtained each week increased by 2% of the amount obtained in the preceding week. It is given that in the first week after the change the company obtained 8000 kg of salt.

- (i) Find the amount of salt obtained in the 12th week after the change.
- (ii) Find the total amount of salt obtained in the first 12 weeks after the change.

[3]

Answer:

Question	Answer	Marks	Guidance
(i)	$r = 1.02$ or $\frac{102}{100}$ used in a GP in some way.	Bl	Can be awarded here for use in S_n formula.
	Amount in 12th week = $8000 (their r)^{11}$ or (their a from $\frac{8000}{their r}$) (their r) ¹²	м	Use of an^{n-1} with a = 8000 & $n = 12$ or with a = $\frac{8000}{1.02}$ and $n = 13$.
	= 9950 (kg) awrt	Al	Note: Final answer of either 9943 or 9940 implies M1. Full marks can be awarded for a correct answer from a list of term
		3	
(ii)	In 12 weeks, total is $\frac{8000((their r)^{12} - 1)}{((their r) - 1)}$	MI	Use of S_n with a = 8000 and $n = 12$ or addition of 12 terms.
	= 107000 (kg) awrt	Al	Correct answer but no working 2/2

Question 66:

(i) The first and second terms of a geometric progression are p and 2p respectively, where p is a positive constant. The sum of the first n terms is greater than 1000p. Show that $2^n > 1001$. [2]

(1) In another case, p and 2p are the first and second terms respectively of an arithmetic progression. The *n*th term is 336 and the sum of the first *n* terms is 7224. Write down two equations in *n* and p and hence find the values of *n* and p. [5]

Answer

Question	Answer	Marks	Guidance
(i)	$S_n = \frac{p(2^n - 1)}{2 - 1}$ soi	M1	
	$p(2^n-1) > 1000 p \rightarrow 2^n > 1001$ AG	A1	
		2	
(ii)	p + (n-1)p = 336	B1	Expect $np = 336$
	$\frac{n}{2}[2p+(n-1)p]=7224$	B1	Expect $\frac{n}{2}(p+np) = 7224$
	Eliminate n or p to an equation in one variable	M1	Expect e.g. $168(1 + n) = 7224$ or $1 + 336/p = 43$ etc
	n = 42, p = 8	A1A1	
		5	

Question 67:

- (a) The third and fourth terms of a geometric progression are 48 and 32 respectively. Find the sum to infinity of the progression. [3]
- (b) Two schemes are proposed for increasing the amount of household waste that is recycled each week.

Scheme A is to increase the amount of waste recycled each month by 0.16 tonnes.

Scheme B is to increase the amount of waste recycled each month by 6% of the amount recycled in the previous month.

The proposal is to operate the scheme for a period of 24 months. The amount recycled in the first month is 2.5 tonnes.

For each scheme, find the total amount of waste that would be recycled over the 24-month period.

9709/12/M/J/18

9709/12/F/M/19

Scheme A	
Scheme B	

Answer:

		Answer	Marks	Guidance
((a)	$ar^2 = 48$, $ar^3 = 32$, $r = \frac{2}{3}$ or $a = 108$	мı	Solution of the 2 eqns to give r (or a). A1 (both)
		$r = \frac{4}{3}$ and $a = 108$	Al	
		$S\infty = \frac{108}{\frac{1}{3}} = 324$	Al	FT Needs correct formula and <i>r</i> between -1 and 1.
			3	
((Ъ)	Scheme A $a = 2.50, d = 0.16$ S _n = 12(5 + 23×0.16)	мі	Correct use of either AP S _n formula.
		$S_n = 104$ tonnes.	Al	
		Scheme B $a = 2.50, r = 1.06$	B1	Correct value of r used in GP.
		$=\frac{2.5(1.06^{24}-1)}{1.06-1}$	мі	Correct use of either S _n formula.
		$S_n = 127$ tonnes.	Al	
			5	•

Question 68:

- (a) In an arithmetic progression, the sum of the first ten terms is equal to the sum of the next five terms. The first term is *a*.
 - (i) Show that the common difference of the progression is $\frac{1}{3}a$. [4]
 - (ii) Given that the tenth term is 36 more than the fourth term, find the value of a. [2]
- (b) The sum to infinity of a geometric progression is 9 times the sum of the first four terms. Given that the first term is 12, find the value of the fifth term. [4]

Answer:

Question	Answer	Marks	Guidance
10(a)(i)	$S_{10} = S_{15} - S_{10}$ or $S_{10} = S_{(114015)}$	мі	Either statement seen or implied.
	5(2a + 9d) oc	B1	
	7.5(2a + 14d) – 5(2a + 9d) or $\frac{5}{2}$ [(a + 10d) + (a+14d)] oe	Al	
	$d = \frac{a}{3} \operatorname{AG}$	Al	Correct answer from convincing working
		4	Condone starting with $d = \frac{a}{3}$ and evaluating bo summations as 25a.
10(a)(ii)	(a+9d) = 36 + (a+3d)	MI	Correct use of $a + (n-1)d$ twice and addition $d \pm 36$
	a = 18	Al	

9709/11/M/J/19

10(b)	$S_{\infty} = 9 \times S_4; \ \frac{a}{1-r} = 9 \frac{a(1-r^4)}{1-r} \text{ or } 9(a+ar+ar^2+ar^3)$	B1	May have 12 in place of <i>a</i> .
	$9(1-r^n) = 1$ where $n = 3,4$ or 5	мі	Correctly deals with a and correctly eliminates $(1-r)^{2}$
	$r^4 = \frac{8}{9} \text{ oe}$	Al	
	(5 th term =) 10 ² / ₃ or 10.7	Al	
		4	Final answer of 10.6 suggests premature approximation – award 3/4 www.

[2]

[2]

[2]

Question 69:

(b) The first, second and third terms of a geometric progression are x, x - 3 and x - 5 respectively.

- (i) Find the value of x.
- (ii) Find the fourth term of the progression.
- (iii) Find the sum to infinity of the progression.

Answer:

7113440			
8(b)(i)	$\frac{x-3}{x} = \frac{x-5}{x-3}$ or (or use of <i>a</i> , <i>ar</i> and <i>ar</i> ²)	Ml	Any valid method to obtain an equation in one variable.
	(a = or x =) 9	Al	
		2	
(b)(ii)	$r = \left(\frac{x-3}{x}\right)$ or $\left(\frac{x-5}{x-3}\right)$ or $\sqrt{\frac{x-5}{x}} = \frac{2}{3}$. Fourth term = $9 \times (\frac{2}{3})^3$	мі	Any valid method to find r and the fourth term with <i>their a</i> & r
	2¾ or 2.67	Al	OE, AWRT
(b)(iii)	$S\infty = \frac{a}{1-r} = \frac{9}{1-\frac{2}{3}}$	м	Correct formula and using <i>their</i> 'r' and 'a', with $ r \le 1$, to obtain a numerical answer.
	27 or 27.0	Al	AWRT
			9709/12/O/N/19

Question 70:

The first, second and third terms of a geometric progression are 3k, 5k - 6 and 6k - 4, respectively.

- (i) Show that k satisfies the equation $7k^2 48k + 36 = 0$.
- [2] (ii) Find, showing all necessary working, the exact values of the common ratio corresponding to each of the possible values of k. [4] [2]
- (iii) One of these ratios gives a progression which is convergent. Find the sum to infinity. 40 Au

Answe	n 😷 🍋 🦷 📉		
9(i)	$\frac{5k-6}{3k} = \frac{6k-4}{5k-6} \to (5k-6)^2 = 3k(6k-4)$	мі	OR any valid relationship
	$25k^2 - 60k + 36 = 18k^2 - 12k \rightarrow 7k^2 - 48k + 36$	Al	AG
9(ii)	$k = \frac{6}{7} , 6$	B1B1	Allow 0.857(1) for $\frac{6}{7}$
	When $k = \frac{6}{7}$, $r = -\frac{2}{3}$	Bl	Must be exact
	When $k = 6$, $r = \frac{4}{3}$	Bl	
9(iii)	Use of $S_{\infty} = \frac{a}{1-r}$ with $r = their - \frac{2}{3}$ and $a = 3 \times their \frac{6}{7}$	мі	Provided $0 < their - 2/3 < 1$
	$\frac{18}{7} \div \left(1 + \frac{2}{3}\right) = \frac{54}{35}$ or 1.54	Al	FT if 0.857(1) has been used in part (ii).

9709/13/O/N/19

[1]

Question 71:

(a) An arithmetic progression has a first term of 5 and a common difference of -3.

Find the number of terms such that the sum to n terms is first less than -200. [4]

(b) A geometric progression is such that its 3rd term is equal to $\frac{81}{64}$ and its 5th term is equal to $\frac{729}{1024}$.

- (i) Find the first term of this progression and the positive common ratio of this progression. [5]
- (ii) Hence find the sum to infinity of this progression.

Question	Answer	Marks	Partial Marks
10(a)	$-200 > \frac{n}{2}(-10 + (n - 1)(-3))$ leading to $3n^2 - 13n - 400 (> 0)$ n = 13.9 so 14th term needed	4	of = or ≤ or < Al for correct quadratic expression DMI for attempt to solve
10(b)(i)	$ar^{2} = \frac{81}{64}$ $ar^{4} = \frac{729}{1024}$ $r^{2} = \frac{9}{16}$ $r = \frac{3}{4}$	5	Al for correct conclusion Bl for 3rd term Bl for 5th term Ml for attempt to solve their equations to obtain either r or a Al for r Al for a
10(1)(1)	$a = \frac{9}{4}$		
10(b)(ii)	s. =9	B1	FT on <i>their a</i> and <i>r</i> , provided <i>r</i> < 1 4037/01/SP/20
	Pale		

1.	Find the solution set of the inequality $\frac{x-5}{x-5} > 1$	
	Find the solution set of the inequality $\frac{x-5}{1-x} > 1$.	(J72/P2/1)
2.	Find the solution set of the inequality $\frac{10}{x} < 19 - 6x$.	(N72/P1/2)
	Find the solution set of the inequality $\frac{4-x}{x-2} > 3$.	(J73/P2/1)
1.	 In answering either part of this question, you may, if you wish, make use of rough sket (a) Given that the inequalities x + y > 1, 3y > 2x - 1, 3x > 2y are simultaneously sa range of values to which x is restricted and the range of values to which y is restricted. 	tisfied, find the
	(b) Find the solution set of the inequality $x + 1 < \frac{2}{x}$.	(N73/P1/2)
5.	Find the solution set of the inequality $\frac{12}{x-3} < x+1$.	(J74/P1/2)
6.	(a) Calculate the area of the region of the $x - y$ plane defined by the simultaneous $y \le 2x, x + y \le 6, x \le 5y$.	ous inequalities
	(b) Find the solution set of the inequality $\frac{x-1}{x+1} > \frac{x}{6}$.	(N74/P2/2)
7.	Prove that the simultaneous inequalities $y < x$, $2y + x > 0$, $x + y < 12$ together imply (find the set of values to which y is restricted.) < x < 24, and (J75/P2/2)
8.	Find the solution set of the inequalities	
	(a) $\frac{3}{2} < \frac{2x-3}{x-5}$, (b) $3x(x-5) < 2(2x-3)$.	(N75/P2/1)
9 .	Use a graphical method to find all pairs of positive integers (x, y) satisfying the inequalities simultaneously: $4x - y > 2$, $2x + y < 12$, $y > x$.	following three (J76/P2/2)
10		he simultaneous
	inequalities $x + y \ge 7$, $2x + y \le 13$, $2x + 3y \le 19$, and give the coordinates of the vert	
	that, if the line $y = kx$ intersects S, then $\frac{1}{6} \le k \le 2\frac{1}{2}$. The point P lies on $y = kx$ and is	
	Prove that, when $\frac{1}{6} \le k \le \frac{3}{5}$, the maximum value for the y-coordinate of P is $13k/(2 + \text{corresponding expression when } \frac{3}{5} \le k \le 2\frac{1}{2}$.	and the second se
11		(J77/P1/2) (J78/P2/3)
12	The set S is $\{(x, y): y + 2x \ge 5 \text{ and } x^2 + y^2 \le 10, (x, y) \in \mathbb{R} \times \mathbb{R}\}$. Give a sketch of the show the region in which the points representing the members of S must lie. If (x, kx) of possible values of k.	
13	(a) Show that the region of the $x - y$ plane within which the following for inequalities are satisfied is, in fact, defined by only three of the inequalities redundant inequality. $x < 6$, $y < x$, $3x - y > 3$, $x + 2y > 6$.	ur simultaneous s, and state the
	(b) Find the solution set of the inequality $\frac{2}{x+1} > x$, where $x \in R$, $x \neq -1$.	(J79/P2/2)
	Solve the inequality $\frac{15}{x-2} > 3x-2$, $(x \in R, x \neq 2)$.	(N79/P1/1)
14		here $x, y \in R$
14 15.	 (a) Find the solution set for x given that the following three relations for x, y, we simultaneously true: y < x +1, y + 6x < 20, x = 5y - 7. (b) Find the solution set of the inequality ¹²/_{x-3} < x + 1, (x ∈ R, x ≠ 3). 	77 - 17, are

Functions f and g are defined by $f: x \to x(x-1), g: x \to (x-1) (3x-5)$, where $x \in R$ in each 16. (a) case. Find the solution set, S, of the inequality $f(x) \ge g(x)$. (i) Sketch the graph of y = f(x) - g(x) for $x \in S$, and state the greatest and least values of (ii) f(x) - g(x) for $x \in S$. Illustrate by means of a sketch the subset of the x-y plane given by $\{(x, y) : |x| < |y|\}$. (J81/P1/2) (b) The set S of ordered pairs of real numbers is given by $S = \{(x, y): y \ge 3x, y + 2x \le 35, y \le x^2\}$. 17. (a) Draw a sketch showing, by shading, the region of the x-y plane containing all the points (x, y) in S. Given that $(x, y) \in S$, find the maximum value of (4x - y) and the minimum value of (x + y). (b) Find the solution set of the inequality $\frac{6}{x-1} > x$, $(x \in R, x \neq 1)$. (N81/P1/2) Solve the inequality $\frac{2x}{x+1} > x$, $(x \in R, x \neq -1)$. 18. (J82/P2/1) 19. Find the set of values of k for which, for all real values of x, $3x^2 + 3x + k > 0$ and $3x^2 + kx + 3 > 0$. (N82/P1/2) Find the solution set of the inequality $\frac{1}{2-r} < \frac{1}{r-3}$. 20. (N82/P2/1) (a) Find the solution set of the inequality x-1/(x+1) + 1 > 0.
(b) Given that x + 2y ≥ 3 and y - 3x ≥ 5, show that y - x ≥ 3. 21. (J83/P2/3)The set, S, of ordered pairs, (x, y), of real numbers is defined by $S = \{(x, y) : y - 2x \le 0, 2y - x \ge 0, x \ge 0\}$ 22. $2y + x - 20 \le 0$. Illustrate the region in the x-y plane determined by the set S. For $(x, y) \in S$ find the greatest value of x + 4y, (a) (b) the greatest value of $x^2 + y^2$, (c) the set of values of $y^2 - 6y$. (J83/P1/2) 23. (a) Solve the inequality $\frac{3}{1-x} < 5 - 4x$. $(x \in R, x \neq 1)$. (b) Draw a sketch to illustrate the region R of the x-y plane defined by the simultaneous inequalities $3x - 7y \ge 1$, $2x + y \le 12$. Show that the line y = mx + (2 - 5m) passes through the vertex of R for all values of m. Deduce the set of values of m for which the inequality $y \le mx + (2 - 5m)$ is true for all (x, y) in R. (J84/P2/3) Illustrate the solution set of the simultaneous inequalities $9 \le y + 3x \le 18$, $0 \le 2y - 3x \le 18$ by 24. (a) means of a diagram, and write down the sets of values to which x and y are separately restricted. (b) Find the solution set of the inequality $\frac{2}{x-3} > \frac{3}{x-2}$, where $x \in R$, $x \neq 2$, $x \neq 3$. (J85/P2/2)25. Find the solution set of the inequalities: (b) $\frac{6}{|x|+1} < |x|$ (a) |x-2| < 2x(c) $x^2 - 6x + 7 > 0$ 26. Find the range(s) of the values of x for which the following inequalities hold: (a) |3x+5| < 4(c) $|x^2 + 1| < |x^2 - 9|$ (b) $\left|\frac{2x+1}{x-3}\right| > 1$ (d) $|3-2x| \le |x+4|$

	(a)	Find the solution set o			4
	(b)	Solve the simultaneou otherwise, determine a 26 are simultaneously	all the pairs of integers (x, y) true.	$y^{2} = 26$. Hence, with the y) for which the inequality	ions $x + y \ge 6$, $x^2 + y^2$
28.	Solv	ve the following inequal			(N85/P1/2
		$\frac{x+1}{x-1} < 4$,	(b) $\frac{ x +1}{ x -1} < 4$,	(c) $\left \frac{x+1}{x-1}\right < 4.$	(197/D1/10
		x-1	(°) x -1 · · ·,	(c) $ \overline{x-1} < 4$.	(J87/P1/18
29.	Ske	tch the graph of $y = x $	+ 2 and hence, or otherwis	e, solve the inequality $ x $	$ +2 > 2x + 1, x \in R.$ (N87/P1/4
30.	Sol	ve the inequality $x - x^3 > x^3$	> 0.		(J88/P2/5
31.	(a)	inequality $x - \frac{3}{2} > \frac{1}{x}$.	diagram, the graphs of $y =$		
	(b)	Sketch, on separate d the solution set of the	liagrams, the graphs of $y =$ equation $ x - 3 + x + 3 $	x , y = x - 3	x - 3 + x + 3 . Find (J89/P1/14
32.	Sol	lve the inequality $x(x - 1)$	(x-2) > 0.	, ile.	(N89/P1/6
33.	Sol	lve, for $x \in R$, each of th	e following inequalities:	10	10 style=**
	(a)	$\frac{x}{x-2} < 5$,	(b) $x(x-2) < 5$,	(c) $ x < 4 x - 3$	3 . (J90/P1/15
34.			x - 1 . On the same dia wise, solve the inequality 4		of $y = 4 x $ and y (N90/P1/4
35.	Sol	ve the inequality $x^3 < 6x$	-x ² .		· (J91/P1/3
36.	Sol	ve the inequality $\frac{x+5}{2-x} < 3$	3.		(J92/P1/4
37.			n, the graphs of $x + 2y = 6$	and $y = x + 2 $. Hence, a	
	inec	quality $ x + 2 < \frac{1}{2}(6 - x)$	x).		(N92/P1/4
38.	solv	ve the inequality $3x^2$ –	e form $A(x + B)^2 + C$, givin 12x - 4 > 0. Give your a x < b, where the value of a	nswer in a form involvin	g one or more of the
	(a)	$3y^2 + 12y - 4 > 0$,			
		$3e^{2u}-12e^{u}-4>0.$			(N93/P1/12
1		39: e inequality $ x+2 < x $	5-2x .		[4
			$(n - 2)^2 < (5 - 2)^2$		D1
Solv Insw	/er:	Clara Ar (manil) s Ar and difference			B1 M1
Solv Insw	ver: (ER: 1	State or imply non-modular i Expand and make reasonable	e solution attempt at 2- or 3-tern		
Solv Insw	ver: IER:	Expand and make reasonable Obtain critical values 1 and	7		Al
Šolv Insw EITH	ver: (ER:	Expand and make reasonable Obtain critical values 1 and State correct answer $x \le 1$,	7 x>7		Al AI
Šolv Insw EITH	ver: IER:	Expand and make reasonable Obtain critical values 1 and State correct answer $x \le 1$, x State one correct equation for	7 x > 7 or a critical value e.g. $x + 2 = 5$	- 2x	Al AI Ml
Solv Insw	ver: VER:	Expand and make reasonable Obtain critical values 1 and State correct answer $x \le 1$, x State one correct equation for	7 x > 7 or a critical value e.g. $x + 2 = 5$ separately e.g. $x + 2 = 5 - 2x = 7$	- 2x	Al AI

0.0				
OR:	State one critical value (probably $x = 1$), from a graphical method or by inspection of solving a linear inequality	or by	B1	
	State the other critical value correctly		B2	
	State correct answer $x < 1$, $x > 7$			4
	[The answer $7 \le x \le 1$ scores B0.]			
-			9709/2/N	//J/02
Question				521
	e inequality $ 9-2x < 1$.			[3]
Answers:				
EITHER:	State or imply non-modular inequality $(9-2x)^2 < 1$, or a correct pair of linear in	nequalities		
	combined or separate, e.g. $-1 < 9 - 2x < 1$ Obtain both critical values 4 and 5	а. С	BI	
	State correct answer $4 < x < 5$; accept $x > 4$, $x < 5$		B1 B1	
OR:	State correct answer $4 < x < 5$, accept $x > 4$, $x < 5$ State a correct equation or pair of equations for both critical values e.g. $9 - 2x = 1$	1 and 9 - 3	and the second sec	
UN.	or $9-2x = \pm 1$	1 00.04 / .	B1	
	Obtain critical values 4 and 5	-	BI	
	State correct answer $4 < x < 5$; accept $x > 4$, $x < 5$	2312	Bl	
OR:	State one critical value (probably $x = 4$) from a graphical method or by inspection	n or by		
	solving a linear inequality or equation	0.	Bl	
	State the other critical value correctly State correct answer $4 < x < 5$; accept $x > 4$, $x < 5$		B1	2
	State correct answer $4 < x < 5$; accept $x > 4$, $x < 5$ [Use of \leq , throughout, or at the end, scores a maximum of B2.]		B1	3
			9709/3/0	VNI/02
Question	41:		51051010	/1W/02.
-	e inequality $ x-2 < 3-2x$.			[4]
Answers:				r.1
EITHER				
ENTIER	corresponding equation	B1		
	Expand and make a reasonable solution attempt at a 2- or 3-term	0.		
	guadratic, or equivalent	M1		
	Obtain critical value x = 1	A1		
	State answer $x < 1$ only	A1		
OR	State the relevant linear equation for a critical value,			
	i.e. $2 - x = 3 - 2x$, or equivalent	B1		
	Obtain critical value $x = 1$ State answer $x < 1$	B1		
	State answer $x < 1$ State or imply by omission that no other answer exists	B1 B1		
OR	Obtain the critical value $x = 1$ from a graphical method, or by inspectio			
UK	or by solving a linear inequality	", B2		
	State answer $x < 1$	B1		
	State or imply by omission that no other answer exists	B1		
		[4]	9709/3/N	1/J/03
Question	42:		-	•
	e inequality $ x-4 > x+1 $.			[4]
				L 'J
Answers:				
ETTHER.	State or imply non-modular inequality $(x - 4)^2 > (x + 1)^2$,	B1		
	or corresponding equation Expand and solve a linear inequality, or equivalent	M1		
	Obtain critical value 1 ¹ / ₂	A1		
	State correct answer $x < 1\frac{1}{2}$ (allow \leq)	A1		
	State correct answer x < 1/z (anow =)	A		

OR:	State a correct linear equation for the critical value e.g. $4 - x = x + 1$ Solve the linear equation for x Obtain critical value 1½, or equivalent State correct answer $x < 1½$	B1 M1 A1 A1	
OR:	State the critical value $1\frac{1}{2}$, or equivalent, from a graphical method or by inspection or by solving a linear inequality State correct answer $x < 1\frac{1}{2}$	/ B3 B1	9709/2/M/J/03
Question Find the	43: set of values of x satisfying the inequality $ 8 - 3x < 2$.		[3]
Answers			
1 EIT	<i>HER:</i> State or imply non-modular inequality e.g. $-2 < 8-3x < 2$, or $(8-3x)^2 < 2^2$, or corresponding equation or pair of equations	M1	
	Obtain critical values 2 and $3\frac{1}{3}$	A1	
	State correct answer $2 < x < 3\frac{1}{3}$	A1	
OR:	State one critical value (probably $x = 2$), from a graphical method or by inspection or by solving a linear equality or equation State the other critical value correctly	B1 B1	
	State correct answer $2 < x < 3\frac{1}{3}$	B1	
		[3]	9709/02/O/N/03
Question	44:	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Solve the	e inequality $ 2^x - 8 < 5$.		[4]
Answers			22
EITI	<i>IER</i> : State or imply non-modular inequality $-5 < 2^{2} - 8 < 5$, or $(2^{x} - 8)^{2} < 5^{2}$ or contrast of the state	- T.	
	pair of linear equations or quadratic equation	BI	
	Use correct method for solving an equation of the form $2^x = a$	M	
	Obtain critical values 1.58 and 3.70, or exact equivalents State correct answer $1.58 \le x \le 3.70$	A	
OR:	Use correct method for solving an equation of the form $2^{x} = a$	М	1
	Obtain one critical value (probably 3.70), or exact equivalent	A	
	Obtain the other critical value, or exact equivalent	A	
	State correct answer $1.58 < x < 3.70$	A	
in terms o [SR: Solu	59 and 3.7. Condone ≤ for <. Allow final answers given separately. Exact equivale f ln or logarithms to base 10.] tions given as logarithms to base 2 can only earn M1 and B1 of the first scheme.]	nts must b	be
9709/03/			
Question			E 4 3
	e inequality $ 2x+1 < x $.		[4]
Answers EITHER:	State or imply non-modular inequality $(2x+1)^2 < x^2$ or corresponding quadratic		
	equation or pair of linear equations $(2x + 1) = \pm x$	B1	
	Expand and make a reasonable solution attempt at a 3-term quadratic, or solve tw		
	linear equations	M1	
	Obtain critical values $x = -1$ and $x = -\frac{1}{3}$ only	A1	
	State answer $-1 < x < -\frac{1}{3}$	A1	
	-		

OR:	Obtain the critical value $x = -1$ from a graphical method , or by inspection, or b	у				
	solving a linear inequality or equation		B1			
	Obtain the critical value $x = -\frac{1}{3}$ (deduct B1 from B3 if extra values are obtained	d)	B2			
	State answer $-1 < x < -\frac{1}{3}$		B1	4		
	[Condone \leq for <; accept –0.33 for $-\frac{1}{3}$.]			97	709/03/	M/J/04
Question						[2]
Answers:	e inequality $ x+1 > x $.					[3]
EITHER:	State or imply non-modular inequality $(x + 1)^2 > x^2$ or corresponding	B1				
	Obtain critical value $-\frac{1}{2}$	B1				
	State answer $x > -\frac{1}{2}$	B1				
OR:	Obtain critical value $-\frac{1}{2}$ by solving a linear inequality or by	_				
		B2 📿	1. A.			
	State answer $x > -\frac{1}{2}$	B1 3				
[For 2x +	$1 > 0, x > + \frac{1}{2}$, or similar reasonable method]	M1	9709/	02/0/	N/04	
Question						E41
Answers:	e inequality $ x > 3x - 2 $.					[4]
	State or imply non-modular inequality $x^2 > (3x - 2)^2$, or corresponding					
	equation Expand and make reasonable solution attempt at 2- or 3-term quadratic,					
	or equivalent Obtain critical values 1/2 and 1					
	State correct answer $\frac{1}{2} < x < 1$					
OR	State one correct linear equation for a critical value					
0.1	State two equations separately					
	Obtain critical values 1/2 and 1 State correct answer 1/2 < x < 1					
OR	State one critical value from a graphical method or inspection or by					
OR	solving a linear inequality					
	State the other critical value correctly State correct answer $\frac{1}{2} \le x \le 1$ 97	09/02/	/ M/J/ 0	5		
Question		00/02/	141/0/0	<i>,</i>		
Given th	at a is a positive constant, solve the inequality					
	x-3a > x-a .					[4]
Answer:						
ETTHER	: State or imply non-modular inequality $(x-3a)^2 > (x-a)^2$, or corre	spond	ung eq	uatio	n	B1 M1
	Expand and solve the inequality, or equivalent Obtain critical value 2a					M1 A1
	State correct answer $x < 2a$ only					Al
OR:	State a correct linear equation for the critical value, e.g. $x - 3a = -(x - 3a)$	- <i>a</i>), oi	r corre	spond	ling	
	inequality	,,			0	B1
	Solve the linear equation for x, or equivalent O_{x}					M1
	Obtain critical value $2a$ State correct answer $x < 2a$ only					A1 A1

OR:	Make recognizable sketches of both $y = x-3a $ and $y = x-a $	on a single diagram	n Bl
	Obtain a critical value from the intersection of the graphs		M1
	Obtain critical value $2a$		Al
	Obtain correct answer $x < 2a$ only		A1 9709/03/O/N/05
Ouest	tion 49:		9709/03/0/11/05
•	the inequality $2x > x - 1 $.		[4]
Answ			
ETTHE	R: State or imply non-modular inequality $(2x)^2 > (x-1)^2$, or corresponding equation	BI	
	Expand and make a reasonable solution attempt at a 2- or 3-term quadratic	MI	
	Obtain critical value $x = \frac{1}{3}$	Al	
	State answer $x > \frac{1}{3}$ only	A1	
OR:	State the relevant critical linear equation, i.e. $2x = 1 - x$	Bl	
	Obtain critical value $x = \frac{1}{3}$	Bl	
	State answer $x > \frac{1}{3}$	BI	
194 <u>1</u> 993	State or imply by omission that no other answer exists	BI	
OR:	Obtain the critical value $x = \frac{1}{3}$ from a graphical method, or by inspection, or by solving		
	linear inequality	H2	
	State answer $x > \frac{1}{3}$ State or imply by omission that no other answer exists		
	state of hispsy by outside that he outer answer exists	9709/0	3/M/J/06
Quest	tion 50:		
•	the inequality $ 2x - 1 > x $.		[4]
Answ			
EITHE	ER: State or imply non-modular inequality $(2x-1)^2 > x^2$ or corresponding qua	dratic equation	11
	or pair of linear equations $2x - 1 = \pm x$ Make reasonable solution attempt at a 3-term quadratic, or solve two linea		MI
	Obtain critical values $x = 1$ and $x = \frac{1}{4}$		AI
			Al
	State answer $x < \frac{1}{3}, x > 1$	coluina o linnor	A1
C	Obtain critical value x = 1 from a graphical method, or by inspection, or by inequality or linear equation		B1
	Obtain the critical value $x = \frac{1}{2}$ similarly		B2
			B1
	State answer $x < \frac{1}{3}, x > 1$		
Quest	tion 51:		9709/02/O/N/06
•	press 4^x in terms of y, where $y = 2^x$.		[1]
(ii) Ho	ence find the values of x that satisfy the equation		
	$3(4^x) - 10(2^x) + 3 = 0,$		
gi	ving your answers correct to 2 decimal places.		[5]
Answ			
	tate or imply that $4^x = y^2$ (=2 ^{2x})		BI
	arry out recognizable solution method for a quadratic equation in y		мі
0	Obtain $y = 3$ and $y = \frac{1}{3}$ from $3y^2 - 10y + 3 = 0$		A1
U	Use logarithmic method to solve an equation of the form $2^{x} = k$, where $k > 0$		M1
S	tate answer 1.58		A1
S	tate answer -1.58	(A1 √ if ± 1.59)	A1
			9709/02/O/N/06

	inequality $ x - 3 > x + 2 $.		[4]
Answers:			
EITHER	1 0 1	/11 /11	
	Obtain critical value $\frac{1}{2}$	1	
	State correct answer $x < \frac{1}{2}$ (allow $x \le \frac{1}{2}$)	1	
OR		41 41	
	Obtain critical value $\frac{1}{2}$	1	
	State correct answer $x < \frac{1}{2}$	0,	
OR	Make recognisable sketches of both $y = x-3 $ and $y = x+2 $ on a	5	
	U U U	81 /(1	
	Obtain critical value $\frac{1}{2}$	1	
	State final answer $x < \frac{1}{2}$	1 9709/02	2/M/J/07
Question (i) Solve	53: the inequality $ y-5 < 1$.		[2]
(ii) Hence	solve the inequality $ 3^x - 5 < 1$, giving 3 significant figures in your ans	swer.	[3]
Answers:		DI	
(i) Obta	in critical values 4 and 6 e answer $4 < y < 6$	B1 B1	[2]
		M1	
State	correct method for solving an equation of the form $3^x = a$, where $a > 0$ in one critical value, i.e. either 1.26 or 1.63	A1	
(ii) Use Obta State	in one critical value, i.e. either 1.26 or 1.63 e answer $1.26 \le x \le 1.63$	A1 A1	[3]
State (ii) Use Obta State 9709/02/O Question	in one critical value, i.e. either 1.26 or 1.63 e answer $1.26 \le x \le 1.63$ /N/07 54:		
State (ii) Use Obta State 9709/02/O Question Solve the Answers:	in one critical value, i.e. either 1.26 or 1.63 e answer $1.26 \le x \le 1.63$ /N/07 54: inequality $ x - 2 > 3 2x + 1 $.		[3] [4]
State (ii) Use Obta State 9709/02/O Question Solve the Answers:	in one critical value, i.e. either 1.26 or 1.63 e answer 1.26 $\leq x \leq 1.63$ /N/07 54: inequality $ x - 2 > 3 2x + 1 $. State or imply non-modular inequality $(x - 2)^2 > (3(2x + 1))^2$, or		
State (ii) Use Obta State 9709/02/O Question Solve the Answers:	in one critical value, i.e. either 1.26 or 1.63 e answer $1.26 \le x \le 1.63$ /N/07 54: inequality $ x - 2 > 3 2x + 1 $.		[4]
State (ii) Use Obta State 9709/02/O Question Solve the Answers:	in one critical value, i.e. either 1.26 or 1.63 e answer 1.26 $\leq x \leq 1.63$ /N/07 54: inequality $ x - 2 > 3 2x + 1 $. State or imply non-modular inequality $(x - 2)^2 > (3(2x + 1))^2$, or corresponding quadratic equation, or pair of linear equations $(x - 2) = \pm 3(2x + 1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear	A1 B1	[4]
State (ii) Use Obta State 9709/02/O Question Solve the Answers:	in one critical value, i.e. either 1.26 or 1.63 e answer $1.26 \le x \le 1.63$ /N/07 54: inequality $ x - 2 > 3 2x + 1 $. State or imply non-modular inequality $(x - 2)^2 > (3(2x + 1))^2$, or corresponding quadratic equation, or pair of linear equations $(x - 2) = \pm 3(2x + 1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	A1 B1	[4] I
State (ii) Use Obta State 9709/02/O Question Solve the Answers:	in one critical value, i.e. either 1.26 or 1.63 e answer 1.26 $\leq x \leq 1.63$ /N/07 54: inequality $ x - 2 > 3 2x + 1 $. State or imply non-modular inequality $(x - 2)^2 > (3(2x + 1))^2$, or corresponding quadratic equation, or pair of linear equations $(x - 2) = \pm 3(2x + 1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear	A1 B1	[4] I I

OR	Obtain the critical value $x = -1$ from a graphical method, or by inspection, or	DI
	by solving a linear equation or inequality Obtain the critical value $x = -\frac{1}{2}$ crimitarly	B1 B2
	Obtain the critical value $x = -\frac{1}{7}$ similarly State engine $-1 \le x \le -\frac{1}{7}$	B1
	State answer $-1 < x < -\frac{1}{7}$	
Question	[Do not condone \leq for \leq ; accept $-\frac{5}{35}$ and -0.14 for $-\frac{1}{7}$.]	9709/03/M/J/08
-	inequality $ x-3 > 2x $.	[4]
Answers EITHER:		
	equation or pair of linear equations $(x - 3) = \pm 2x$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x = 1$ and $x = -3$ State answer $-3 < x < 1$	M1 s M1 A1 A1
OR: Question	by solving a linear inequality or linear equation Obtain the critical value $x = 1$ similarly State answer $-3 < x < 1$	B1 B2 B1 9709/02/O/N/08
-	e inequality $ 3x+2 < x $.	[4]
	State or imply non-modular inequality $(3x + 2)^2 < x^2$, or corresponding quadratic equator pair of linear equations $3x + 2 = \pm x$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x = -1$ and $x = -\frac{1}{2}$	M1
	State answer $-1 < x < -\frac{1}{2}$	A1
	Obtain the critical value $x = -1$ from a graphical method or by inspection, or by solvi a linear equation or inequality Obtain the critical value $x = -\frac{1}{2}$ similarly	ng B1 B2
	State answer $-1 < x < -\frac{1}{2}$	B1 9709/02/M/J/09
		[4]
Answers EITHER:	State or imply non-modular inequality $(2-3x)^2 < (x-3)^2$, or corresponding equation and make a reasonable solution attempt at a 3-term quadratic	on, M1
	Obtain critical value $x = -\frac{1}{2}$	A1
	Obtain $x > -\frac{1}{2}$	A1
	Fully justify $x^2 > -\frac{1}{2}$ as only answer	A1
OR1:	State the relevant critical linear equation, i.e. $2 - 3x = 3 - x$	B1
	Obtain critical value $x = -\frac{1}{2}$	B1
	Obtain $x > -\frac{1}{2}$	Bl
0.00	Fully justify $x > -\frac{1}{2}$ as only answer Obtain the critical value $x = -\frac{1}{2}$ by increasing on by solving a linear inequality	B1
OR2:	Obtain the critical value $x = -\frac{1}{2}$ by inspection, or by solving a linear inequality	B2
	Obtain $x > -\frac{1}{2}$	B1
	Fully justify $x > -\frac{1}{2}$ as only answer	B1

EITHER:State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1Make reasonable solution attempt at a 3-term quadratic, or solve two linear equationsM1Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ A1State answer $\frac{1}{3}a < x < 7a$ A1OR:Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequalityB1Obtain the critical value $x = \frac{1}{2}a$ similarlyB2State answer $\frac{1}{3}a < x < 7a$ B1[Do not condone \leq for $<$; accept 0.33 for $\frac{1}{3}$.]9709/31/M/J/10Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures.[4]				
Obtain $x > -\frac{1}{2}$ B1Fully justify $x > -\frac{1}{2}$ as only answerB1[Condone > for > in the third mark but not the fourth.]9709/31/0/N/09Question 58:Solve the equation $5x^{x+2} = 3^x + 3^2$, giving your answer correct to 3 significant figures.Answers:[4]EITTIER:Use laws of indices correctly and solve a linear equation for 3^x , or for 3^x M1Obtain 3^x , or 3^x in any correct form, e.g. $3^x = \frac{3^2}{(3^2 - 1)}$ A1Use correct method for solving $3^{xx} = a$ for x, where $a > 0$ M1Obtain answer $x = 0.107$ A1OR:State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^x + 9)}{\ln 3} - 2$ B1Use the formula correctly at least once Obtain answer $x = 0.107$ M1Obtain 59:Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant.[4]Answers:EITTIER:State or imply non-modular inequality $(x + 3a)^2 = (2(x - 2a))^2$, or corresponding quaratic equation, or pair of linear equations $(x + 3a) = 2(x - 2a)$ B1Make reasonable solution attempt at a^2 lerm quadratic, or solve two linear equationsA1OR:Obtain the critical value $x = t^2 a$ and $x = 7a$ A1OB:Obtain the critical value $x = t^2 a$ implied method, or by inspection, or by solving a linear equation or inequalityB1OB:Obtain the critical value $x = t^2 a$ implied method, or by inspection, or by solving a linear equation or inequalityB2OB:Obtain the critical value $x = t^2 a$ implied method, or by inspection, or by solving a linear equation or inequalityB2 <td< td=""><td>OR3:</td><td></td><td></td><td></td></td<>	OR3:			
Fully justify $x > -\frac{1}{2}$ as only answerB1[Condone \geq for $>$ in the third mark but not the fourth.]9709/31/O/N/09Question 58:Solve the equation $3^{x+2} = 3^x + 3^2$, giving your answer correct to 3 significant figures.[4]Answers:Answers:[4]EITTIER:Use laws of indices correctly and solve a linear equation for 3^x , or for 3^x M1Obtain 3^x , or 3^x in any correct form, e.g. $3^x = \frac{3^2}{(3^2 - 1)}$ A1Use correct method for solving $3^{tx} = a$ for x, where $a > 0$ M1Obtain answer $x = 0.107$ A1OR:State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^x + 9)}{\ln 3} - 2$ B1Use the formula correctly at least once Obtain answer $x = 0.107$ M1Show that the equation has no other root but 0.107 [For the solution 0.107 with the equation has no other root but 0.107 is shown to be the only root.]9709/31/O/N/09Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant.[4]Answers: EITTIER:State or imply non-modular inequality $(x + 3a)^2 \in (2x - 2a)^2^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = 2(x - 2a)$ B1Make reasonable solution attempt at a^2 term quadratic, or solve two linear equationsA1OR:Obtain the critical value $x = ra$ from a graphical method, or by inspection, or by solving a linear equation or inequalityB1OR:Obtain the critical value $x = ra$ is similarlyB2State answer $\frac{1}{3} a < x < 7a$ A1OR:Obtain the critical value $x = ra$ is milarlyB2 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
[Condone ≥ for > in the third mark but not the fourth.] 9709/31/O/N/09 Question 58: Solve the equation $3^{x+2} = 3^x + 3^2$, giving your answer correct to 3 significant figures. [4] Answers: <i>ETTHER</i> : Use laws of indices correctly and solve a linear equation for 3^x , or for 3^{-x} MI Obtain 3^x , or 3^{-x} in any correct form, e.g. $3^x = \frac{3^2}{(3^2 - 1)}$ A1 Use correct method for solving $3^{x+2} = a$ for x, where $a > 0$ M1 Obtain answer $x = 0.107$ A1 <i>OR</i> : State an appropriate iterative formula, e.g. $x_{a+1} = \frac{\ln(3^x + 9)}{\ln 3} - 2$ B1 Use the formula correctly at least once Obtain answer $x = 0.107$ A1 <i>OR</i> : State an appropriate iterative formula, e.g. $x_{a+1} = \frac{\ln(3^x - 4)}{\ln 3} - 2$ B1 Use the formula correctly at least once Obtain answer $x = 0.107$ A1 Show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a number B1 if 0.107 is shown to be the only root.] 9709/31/O/N/09 Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant. [4] Answers: <i>ETTHER</i> : State or imply non-modular inequality $(x + 3a)^2 + 2(2x - 2a)$ B1 Make reasonable solution attempt at $a = 4 \tan a$ part $a = 4 \tan a = 4 \tan a$ M1 Obtain critical values $x = \frac{1}{2}a$ and $x = 7a$ A1 State answer $\frac{1}{3}a < x < 7a$ A1 <i>OR</i> : Obtain the critical value $x = a \sin \sin \tan y$ B1 State answer $\frac{1}{3}a < x < 7a$ A1 <i>OR</i> : Obtain the critical value $x = a \sin \sin \tan y$ B1 State answer $\frac{1}{a} < x < 7a$ B1 [Do not condone $\leq \tan < a \cos a$ B1 [Do not condone $\leq \tan < a \cos a$ B1 Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]				
Question 58: Solve the equation $3^{x+2} = 3^x + 3^2$, giving your answer correct to 3 significant figures.[4]Answers: EITHER: Use laws of indices correctly and solve a linear equation for 3^x , or for 3^{-x} M1Obtain 3^x , or 3^{-x} in any correct form, e.g. $3^x = \frac{3^2}{(3^2-1)}$ A1Use correct method for solving $3^{4x} = a$ for x, where $a > 0$ M1OR:State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{4x} + 9)}{\ln 3} - 2$ B1Use the formula correctly at least once Obtain answer $x = 0.107$ M1OR:State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{4x} + 9)}{\ln 3} - 2$ B1Use the formula correctly at least once Obtain answer $x = 0.107$ M1Show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a turner B1 if 0.107 is shown to be the only root.]9709/31/O/N/09Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant.[4]Answers: EITTHER: State or imply non-modular inequality $(x + 3a)^2 + 2(x - 2a)^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1Make reasonable solution attempt at $a + term$ quadratic, or solve two linear equationsM1Obtain the critical values $x = \frac{1}{3}a$ and $x = 7a$ A1OR:Obtain the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{3} < x < 7a$ A1Obtain the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{4} < x < 7a$ B1[Do not condone $\leq \tan < accept 0.33$ for $\frac{1}{3}$.]9709/		-	B1	
Solve the equation $3^{x+2} = 3^x + 3^2$, giving your answer correct to 3 significant figures. [4] Answers: EITHER: Use laws of indices correctly and solve a linear equation for 3^x , or for 3^{-x} M1 Obtain 3^x , or 3^{-x} in any correct form, e.g. $3^x = \frac{3^2}{(3^2 - 1)}$ A1 Use correct method for solving $3^{1x} = a$ for x, where $a > 0$ M1 Obtain answer $x = 0.107$ A1 OR: State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{x_n} + 9)}{\ln 3} - 2$ B1 Use the formula correctly at least once Obtain answer $x = 0.107$ A1 Or the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is show to be the only root.] Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant. Answers: EITHER: State or imply non-modular inequality $(x + 3a)^{\frac{1}{2}} \le (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1 Make reasonable solution attempt at $a \rightarrow$ term quadratic, or solve two linear equations Obtain the critical values $x = \frac{1}{3}a$ and $x = 7a$ A1 State answer $\frac{1}{3}a < x < 7a$ A1 OR: Obtain the critical value $x = \frac{1}{3}a$ similarly State answer $\frac{1}{3}a < x < 7a$ B1 [Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.] Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]	0		9709	/31/O/N/09
Answers: EITHER: Use laws of indices correctly and solve a linear equation for 3^x , or for 3^{-x} M1 Obtain 3^x , or 3^{-x} in any correct form, e.g. $3^x = \frac{3^2}{(3^2 - 1)}$ A1 Use correct method for solving $3^{4x} = a$ for x, where $a > 0$ M1 Obtain answer $x = 0.107$ A1 OR: State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{4x} + 9)}{\ln 3} - 2$ B1 Use the formula correctly at least once Obtain answer $x = 0.107$ M1 Show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is shown to be the only root.] Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant. [4] Answers: EITHER: State or imply non-modular inequality $(x + 3a)^3 = (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1 Make reasonable solution attempt at $a = 3$ -term quadratic, or solve two linear equations Obtain the critical value $x = \frac{1}{a}a$ and $x = 7a$ A1 State answer $\frac{1}{3}a < x < 7a$ A1 Obtain the critical value $x = \frac{1}{a}a$ similarly Solving a linear equation or mequality Obtain the critical value $x = \frac{1}{a}a$ similarly State answer $\frac{1}{a}a < x < 7a$ B1 [Do not condone \leq for \leq incept 0.33 for $\frac{1}{3}$.] Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]			'es	[4]
<i>EITHER</i> : Use laws of indices correctly and solve a linear equation for 3^x , or for 3^{-x} M1 Obtain 3^x , or 3^{-x} in any correct form, e.g. $3^x = \frac{3^2}{(3^2 - 1)}$ A1 Use correct method for solving $3^{4x} = a$ for x , where $a > 0$ M1 Obtain answer $x = 0.107$ A1 <i>OR</i> : State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{4x} + 9)}{\ln 3} - 2$ B1 Use the formula correctly at least once Obtain answer $x = 0.107$ A1 <i>OR</i> : State equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is shown to be the only root.] Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant. [4] Answers: <i>EITHER</i> : State or imply non-modular inequality $(x + 3a)^3 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1 Make reasonable solution at an enterm quadratic, or solve two linear equations Obtain the critical values $x = \frac{1}{3}a$ and $x = 7a$ A1 State answer $\frac{1}{3}a < x < 7a$ A1 <i>OR</i> : Obtain the critical value $x = \frac{1}{3}a$ similarly State answer $\frac{1}{3}a < x < 7a$ B1 [Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.] Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]			05.	["]
Use correct method for solving $3^{4x} = a$ for x, where $a > 0$ Obtain answer $x = 0.107$ A1 <i>OR</i> : State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{4x} + 9)}{\ln 3} - 2$ Use the formula correctly at least once Obtain answer $x = 0.107$ Show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is show to be the only root.] Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant. [4] Answers: <i>EITHER:</i> State or imply non-modular inequality $(x + 3a)^{4x} \ge (2(x - 2a))^{2}$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ M1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain the critical value $x = \frac{1}{3}a$ and $x = 7a$ A1 State answer $\frac{1}{3}a < x < 7a$ A1 OR: Obtain the critical value $x = \frac{1}{3}a$ from a graphical method, or by inspection, or by solving a linear equation or inequality Obtain the critical value $x = \frac{1}{3}a$ similarly State answer $\frac{1}{3}a < x < 7a$ B1 [Do not condone $\leq 10x < 3x = 1x^{2}$ B1 [Do not condone $\leq 10x < 3x = 1x^{2}$ B1 [Do not condone $\leq 10x < 3x = 1x^{2}$ B1 [Do not condone $\leq 10x < 3x < 1a$ B1 $\frac{2^{x} + 1}{2^{x} - 1} = 5$, giving your answer correct to 3 significant figures. [4]		Use laws of indices correctly and solve a linear equation for 3^x , or for 3^{-x}	M1	
Obtain answer $x = 0.107$ A1OR:State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{2n} + 9)}{\ln 3} - 2$ B1Use the formula correctly at least once Obtain answer $x = 0.107$ Show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a turther B1 if 0.107 is shown to be the only root.]B1Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant.[4]Answers: equationsMake reasonable solution attempt at a 3-term quadratic, or solve two linear equationsB1Make reasonable solution attempt at a 3-term quadratic, or solve two linear equationsB1OR:Obtain the critical value $x + \frac{1}{3}a$ and $x = 7a$ A1State answer $\frac{1}{3}a < x < 7a$ A1OR:Obtain the critical value $x - \frac{1}{3}a$ from a graphical method, or by inspection, or by solving a linear equation or inequality Obtain the critical value $x = \frac{1}{3}a$ and $x = 7a$ B1Outsin the critical value $x = \frac{1}{3}a$ and $x = 7a$ B1Othin the critical value $x = \frac{1}{3}a$ and $x = 7a$ B1Othin the critical value $x = \frac{1}{3}a$ and $x = 7a$ B1Obtain the critical value $x = \frac{1}{3}a$ is milarlyB2State answer $\frac{1}{4}a < x < 1a$ B1ID not condone $\leq 1ar < acept 0.33$ for $\frac{1}{3}$.]9709/31/M/J/10Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures.[4]		Obtain 3 ^x , or 3 ^{-x} in any correct form, e.g. $3^x = \frac{3^2}{(3^2 - 1)}$	A1	
Use the formula correctly at least once Obtain answer $x = 0.107$ Show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is shown to be the only root.] Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where <i>a</i> is a positive constant. [4] Answers: <i>EITHER:</i> State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ M1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ State answer $\frac{1}{3}a < x < 7a$ Obtain the critical value $x = \frac{1}{3}a$ from a graphical method, or by inspection, or by solving a linear equation or inequality Obtain the critical value $x = \frac{1}{3}a$ similarly Dotain the critical value $x = \frac{1}{3}a$ similarly State answer $\frac{1}{3}a < x < 7a$ Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]				
Obtain answer $x = 0.10^7$ A1 A1 Show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is shown to be the only root.]A1 A1 A1 9709/31/O/N/09Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant.[4]Answers: EITHER:State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equationsB1 M1 Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ A1 State answer $\frac{1}{3}a < x < 7a$ OR:A1 Obtain the critical value $x = 1a$ from a graphical method, or by inspection, or by solving a linear equation or inequality B1 Obtain the critical value $x = \frac{1}{2}a$ similarly State answer $\frac{1}{4}a < x < 7a$ [Do not condone $\leq $ for $<$; accept 0.33 for $\frac{1}{3}$.]9709/31/M/J/10 Question 60: Solve the equationQuestion 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures.[4]	OR:	State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{x_n} + 9)}{\ln 3} - 2$	B1	
Show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is shown to be the only root.] 9709/31/O/N/09 Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where <i>a</i> is a positive constant. [4] Answers: <i>EITHER:</i> State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations 0 and $x = 7a$ A1 State answer $\frac{1}{3}a < x < 7a$ A1 <i>OR:</i> Obtain the critical values $x = \frac{1}{3}a$ and $x = 7a$ A1 Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequality B1 Obtain the critical value $x = \frac{1}{3}a$ similarly B2 State answer $\frac{1}{3}a < x < 7a$ B1 [Do not condone $\leq $ for $<$; accept 0.33 for $\frac{1}{3}$.] Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]				
[For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is shown to be the only root.] 9709/31/O/N/09 Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where <i>a</i> is a positive constant. [4] Answers: EITHER: State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations M1 Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ A1 State answer $\frac{1}{3}a < x < 7a$ A1 OR: Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequality B2 State answer $\frac{1}{3}a < x < 7a$ B1 [Do not condone $\leq 10r <$; accept 0.33 for $\frac{1}{3}$.] Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]				
Question 59: Solve the inequality $ x + 3a > 2 x - 2a $, where a is a positive constant.[4]Answers: EITHER:State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1Make reasonable solution attempt at a 3-term quadratic, or solve two linear equationsM1Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ A1State answer $\frac{1}{3}a < x < 7a$ A1OR:Obtain the critical value $x = \frac{1}{3}a$ from a graphical method, or by inspection, or by solving a linear equation or inequalityB1Obtain the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{4}a < x < 7a$ B1Obtain the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{4}a < x < 7a$ B1Outsin the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{4}a < x < 7a$ B1Outsin the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{4}a < x < 7a$ B1Outsin the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{4}a < x < 7a$ B1Outsin the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{4}a < x < 7a$ B1Outsin the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{2}a < x < 7a$ B1Outsin the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{4}a < x < 7a$ B1Outsin the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{2}a < x < 7a$ B1 <tr< td=""><td></td><td>[For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107</td><td>7</td><td>0/31/O/N/09</td></tr<>		[For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107	7	0/31/O/N/09
Solve the inequality $ x + 3a > 2 x - 2a $, where <i>a</i> is a positive constant. [4] Answers: <i>EITHER:</i> State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations M1 Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ A1 State answer $\frac{1}{3}a < x < 7a$ A1 <i>OR:</i> Obtain the critical value $x = \frac{1}{3}a$ from a graphical method, or by inspection, or by solving a linear equation or inequality B1 Obtain the critical value $x = \frac{1}{3}a$ similarly B2 State answer $\frac{1}{3}a < x < 7a$ B1 [Do not condone \leq for $<$; accept 0.33 for $\frac{1}{3}$.] Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]	Question	59:	5705	1011011103
EITHER:State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1Make reasonable solution attempt at a 3-term quadratic, or solve two linear equationsM1Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ A1State answer $\frac{1}{3}a < x < 7a$ A1OR:Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequalityB1Obtain the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{3}a < x < 7a$ B1Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$,giving your answer correct to 3 significant figures.[4]	Solve the	e inequality $ x + 3a > 2 x - 2a $, where a is a positive constant.		[4]
quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(x - 2a)$ B1Make reasonable solution attempt at a 3-term quadratic, or solve two linear equationsM1Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ A1State answer $\frac{1}{3}a < x < 7a$ A1OR:Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequalityB1Obtain the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{3}a < x < 7a$ B1[Do not condone \leq for $<$; accept 0.33 for $\frac{1}{3}$.]9709/31/M/J/10Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$,giving your answer correct to 3 significant figures.[4]	Answers:			
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ State answer $\frac{1}{3}a < x < 7a$ OR: Obtain the critical value $x = 1a$ from a graphical method, or by inspection, or by solving a linear equation or inequality Obtain the critical value $x = \frac{1}{3}a$ similarly State answer $\frac{1}{3}a < x < 7a$ [Do not condone \leq for $<$; accept 0.33 for $\frac{1}{3}$.] Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]	EITHEK:		B 1	
Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$ A1State answer $\frac{1}{3}a < x < 7a$ A1OR:Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequalityB1Obtain the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{3}a < x < 7a$ B1[Do not condone \leq for $<$; accept 0.33 for $\frac{1}{3}$.]9709/31/M/J/10Question 60:Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$,giving your answer correct to 3 significant figures.			21	
State answer $\frac{1}{3}a < x < 7a$ <i>OR:</i> Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequality Obtain the critical value $x = \frac{1}{3}a$ similarly State answer $\frac{1}{3}a < x < 7a$ [Do not condone \leq for $<$; accept 0.33 for $\frac{1}{3}$.] Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures. [4]				
OR:Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by solving a linear equation or inequalityB1 B1 B2Obtain the critical value $x = \frac{1}{3}a$ similarlyB2 B1 [Do not condone $\leq $ for $<$; accept 0.33 for $\frac{1}{3}$.]B1 9709/31/M/J/10Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures.[4]				
solving a linear equation or inequalityB1Obtain the critical value $x = \frac{1}{3}a$ similarlyB2State answer $\frac{1}{3}a < x < 7a$ B1[Do not condone \leq for <; accept 0.33 for $\frac{1}{3}$.]9709/31/M/J/10Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures.[4]	OR		AI	
State answer $\frac{1}{3}a < x < 7a$ B1[Do not condone \leq for <; accept 0.33 for $\frac{1}{3}$.]9709/31/M/J/10Question 60: Solve the equation $\frac{2^x + 1}{2^x - 1} = 5$, giving your answer correct to 3 significant figures.[4]	U.		B 1	
[Do not condone \leq for <; accept 0.33 for $\frac{1}{3}$.] Question 60: Solve the equation $\frac{2^{x} + 1}{2^{x} - 1} = 5,$ giving your answer correct to 3 significant figures. [4]		Obtain the critical value $x = \frac{1}{3}a$ similarly	B2	
Question 60: Solve the equation $\frac{2^{x} + 1}{2^{x} - 1} = 5,$ giving your answer correct to 3 significant figures. [4]		State answer $\frac{1}{3}a < x < 7a$	B1	
Solve the equation $\frac{2^{x} + 1}{2^{x} - 1} = 5,$ giving your answer correct to 3 significant figures. [4]		[Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.]	9709	9/31/M/J/10
$\frac{2^{x} + 1}{2^{x} - 1} = 5,$ giving your answer correct to 3 significant figures. [4]				
giving your answer correct to 3 significant figures. [4]	Solve the	*		
		$\frac{2^{x}+1}{2^{x}-1}=5,$		
Answers:	giving ye	our answer correct to 3 significant figures.		[4]
	Answers:			
EITHER: Attempt to solve for 2^x M1 Obtain $2^x = 6/4$, or equivalent A1				
Use correct method for solving an equation of the form $2^x = a$, where $a > 0$ M1				
Obtain answer $x = 0.585$ A1				

OR:	State an appropriate iterative formula, e.g. $x_{n+1} = \ln((2^{x_n} + 6) / 5) / \ln 2$	B1	
	Use the iterative formula correctly at least once Obtain answer $x = 0.585$	M1 A1	
	Show that the equation has no other root but 0.585	Al	[4]
	[For the solution 0.585 with no relevant working, award B1 and a further B1 if 0.585		
	be the only root.]		9709/32/M/J/10
Questio			9709/32/W/J/10
Solve	the inequality $ x-3 > 2 x+1 $.		[4]
Answei			
EITHEI	R: State or imply non-modular inequality $(x-3)^2 > (2(x+1))^2$, or corresponding quadratic		
	equation, or pair of linear equations $(x - 3) = \pm 2(x + 1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	B1 M1	
	Obtain critical values -5 and $\frac{1}{3}$	A1	
	5	Al	
	State answer $-5 < x < \frac{1}{3}$	AI	
OR:	Obtain the critical value $x = -5$ from a graphical method, or by inspection,		
	or by solving a linear equation or inequality	B1	
	Obtain the critical value $x = \frac{1}{3}$ similarly	B2	
	State answer $-5 < x < \frac{1}{3}$	B1	
	[Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.]	9	709/33/M/J/10
Questio Solve t	he inequality $2 x-3 > 3x+1 $.		[4]
Answei			
	R: State or imply non-modular inequality $(2(x-3))^2 = (3x+1)^2$, or corresponding quadratic equation, or pair of linear equations $2(x-3) = \pm (3x+1)$	B1	
	Make reasonable solution attempt at a 3-term quadratic, or solve two linear		
	equations	M1	
	Obtain critical values $x = -7$ and $x = 1$ State answer $-7 \le x \le 1$	A1 A1	
OR:	Obtain critical value $x = -7$ or $x = 1$ from a graphical method, or by inspection,	AI	
	or by solving a linear equation or inequality	B1	
	Obtain critical values $x = -7$ and $x = 1$	B2	
	State answer $-7 < x < 1$	B1	
	[Do not condone: < for <.]	ç	709/32/O/N/10
Questio	on 63:		
Solve t	he inequality $ x < 5 + 2x $.		[3]
Answe			
EITHE			
	equation, or pair of linear equations $x = \pm (5 + 2x)$	M 1	
	Obtain critical values -5 and $-\frac{5}{3}$ only	A1	
	Obtain final answer $x < -5$, $x > -\frac{5}{3}$	A1	

OR:	State one critical value e.g5, by solving a linear equation or inequality, or from a graphical method, or by inspection	B1	
	State the other critical value, e.g. $-\frac{5}{3}$, and no other	B1	
	Obtain final answer $x < -5$, $x > -\frac{5}{3}$	B1	
	[Do not condone \leq or \geq .]	g	0709/32/M/J/11
Question Solve the	64: e equation $ 4 - 2^x = 10$, giving your answer correct to 3 significant figures		[3]
Answer:		DI	
	apply $4-2^x = -10$ and 10 at method for solving equation of form $2^x = a$	B1 M1	
Ose correct Obtain 3.8	÷ .		9709/31/M/J/12
Question	65:		010010111110112
Find the	set of values of x satisfying the inequality $3 x-1 < 2x+1 $.		[4]
Answers:			
EITHER	State or imply non-modular inequality $(3(x-1))^2 < (2x+1)^2$ or corresponding quadratic equation, or pair of linear equations $3(x-1) = (2x+1)^2$	B1	
	Make reasonable solution attempt at a 3-term quadratic, or solve two linear	ы	
	equations	M1	
	Obtain critical values $x = \frac{2}{5}$ and $x = 4$	A1	
	State answer $\frac{2}{5} < x < 4$	A1	
OR	Obtain critical value $x = \frac{2}{5}$ or $x = 4$ from a graphical method, or by inspection, or by		
011	solving a linear equation or inequality	B 1	
	Obtain critical values $x = \frac{2}{5}$ and $x = 4$	B2	
	State answer $\frac{2}{5} < x < 4$	B1	
	[Do not condone \leq for $<$.]		9709/32/O/N/12
Question	66:		
Solve the	e equation $5^{x-1} = 5^x - 5,$		
giving yo	our answer correct to 3 significant figures.		[4]
Answer:			
EITHER	Use laws of indices correctly and solve for 5^x or for 5^{-x} or for 5^{x-1}	M1	
	Obtain 5 ^x or for 5 ^{-x} or for 5 ^{x-1} in any correct form, e.g. $5^x = \frac{5}{1 - \frac{1}{5}}$	Al	
	Use correct method for solving $5^x = a$, or $5^{-x} = a$, or $5^{x-1} = a$, where $a > 0$ Obtain answer $x = 1.14$	M1 A1	
OR	Use an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(5^{n-1}+5)}{\ln 5}$, correctly, at least once	М1	
on	Obtain answer 1.14 $\ln 5$, correctly, at reast once	Al	
	Show sufficient iterations to at least 3 d.p. to justify 1.14 to 2 d.p., or show		
	there is a sign change in the interval (1.135, 1.145)	A1	
	Show there is no other root [For the solution $x = 1.14$ with no relevant working give B1, and a further B1 if	A1	
	1.14 is shown to be the only solution.]	9	9709/32/O/N/12
Question			
(i) Solve	the equation $ 4x - 1 = x - 3 $.	[3]	
(ii) Hence	solve the equation $ 4^{y+1} - 1 = 4^y - 3 $ correct to 3 significant figures.	[3]	

Δns	wers:			
(i)	Either	State or imply non-modular equation $(4x-1)^2 = (x-3)^2$ or pair of		
(4)	<u></u>	linear equations $4x-1=\pm(x-3)$	B1	
		Solve a three-term quadratic equation or two linear equations	MI	
		Obtain $-\frac{2}{3}$ and $\frac{4}{5}$		
		Obtain $-\frac{1}{3}$ and $\frac{1}{5}$	A1	
		2		
	<u>Or</u>	Obtain value $-\frac{2}{3}$ from inspection or solving linear equation	B1	
		Obtain value $\frac{4}{5}$ similarly	B2	
(ii)	State or	imply at least $4^{y} = \frac{4}{5}$, following a positive answer from part (i)	В1√	
	Apply k	ogarithms and use $\log a^{b} = b \log a$ property	M 1	
	Obtain	-0.161 and no other answer	A1	9709/31/M/J/13
Sol		: uation $2 3^x - 1 = 3^x$, giving your answers correct to 3 significant figures.		[4]
	wers:	te or imply non-modular equation $2^2(3^x-1)^2 = (3^x)^2$, or pair of equations		
EII		te or imply non-modular equation $2^{-}(3^{*}-1)^{*} = (3^{*})^{*}$, or pair of equations $3^{*}-1) = \pm 3^{*}$	M1	
	Ob	tain $3^x = 2$ and $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$)	A1	
OR.	· 0h	tain $3^x = 2$ by solving an equation or by inspection	B1	
UK.				
		tain $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$) by solving an equation or by inspection	B1	
Use Obt	e correct n tain final a	nethod for solving an equation of the form $3^x = a$ (or $3^{x+1} = a$), where $a > 0$ answers 0.631 and -0.369	M1 A1	9709/32/O/N/13
	estion 69			
		nequality $x^2 - x - 2 > 0$.		[3]
	+ 1) $(r = 1)$	2) or other valid method M1 Attempt soln of eqn or other me	thad	
-1		A1	mou	
	(-1, x) > 2			
		[3]	9	709/13/O/N/13
-	estion 70 and the se	: t of values of x satisfying the inequality		
		x+2a > 3 x-a ,		
l-	oro a in	a positiva constant		E 4 1
		a positive constant.		[4]
	wers: 'HER: Stat	e or imply non-modular inequality $(x + 2a)^2 > (3(x - a))^2$, or corresponding		
		dratic equation, or pair of linear equations $(x + 2a) = \pm 3(x - a)$	B1	
		ke reasonable solution attempt at a 3-term quadratic, or solve two linear equations		
	for	x	M1	
	Obt	ain critical values $x = \frac{1}{4}a$ and $x = \frac{5}{2}a$	A1	
	Stat	e answer $\frac{1}{4}a < x < \frac{5}{2}a$	A1	

OR:	Obtain critical value $x = \frac{5}{2}a$ from a graphic	al method,	, or by inspection, or by solving		
	a linear equation or inequality Obtain critical value $x = \frac{1}{4}a$ similarly			B1 B2	
	State answer $\frac{1}{4}a < x < \frac{5}{2}a$			B2 B1	
	[Do not condone \leq for $<$.]				
Questio				970	9/32/M/J/14
	bress $4x^2 - 12x$ in the form $(2x + a)^2 + b$.			[2	2]
(ii) Her Answer	nce, or otherwise, find the set of values of s:	x satisfyi	ng $4x^2 - 12x > 7$.	[2	2]
(i)	$(2x-3)^2-9$	B1B1	For -3 and -9		
		[2] M1	At least one of these statements		
(ii)	2x-3 > 4 $2x-3 < -4$				
	$x > 3\frac{1}{2}$ (or) $x < -\frac{1}{2}$ cao	A1	Allow 'and' $3\frac{1}{2}$, $-\frac{1}{2}$ so iscores first	t M1	
	Allow $-\frac{1}{2} > x > 3\frac{1}{2}$.0		
OR	$4x^2 - 12x - 7 \rightarrow (2x - 7)(2x + 1)$	M1	Attempt to solve 3-term quadratic		
	$x > 3\frac{1}{2} (or) < -\frac{1}{2}$ cao	A1	Allow 'and' $3\frac{1}{2}$, $-\frac{1}{2}$ so scores first	t M1	
	Allow $-\frac{1}{2} > x > 3\frac{1}{2}$	[2]			
	Anow $-\frac{1}{2} > x > 3\frac{1}{2}$				
Questio	~ 7) .			970)9/11/M/J/14
-	the inequality $ 3x - 1 < 2x + 5 $.		N		[4]
Answer		1			[-]
Either	State or imply non-modular inequality $(3x -$	$(1)^2 < (2x + 1)^2$	$(-5)^2$ or corresponding		
	quadratic equation or pair of linear equations		,	1	
	Solve a three-term quadratic or two linear eq	uations 5x	$x^2 - 26x - 24 < 0$ M	1	
	Obtain $-\frac{4}{5}$ and 6		А	1	
	State $-\frac{4}{5} < x < 6$		А	1	
<u>Or</u>	Obtain value 6 from graph, inspection or sol	ving linear	equation B	1	
	Obtain value $-\frac{4}{5}$ similarly		В	2	
	State $-\frac{4}{5} < x < 6$		В		3/O/N/14
Questio					
	the substitution $u = 4^x$, solve the equilation figures.	uation 4^x	$+ 4^2 = 4^{x+2}$, giving your and	swer co	rrect to [4]
Answer Use laws	: s of indices correctly and solve for <i>u</i>		Ν	41	
Obtain <i>u</i>	<i>u</i> in any correct form, e.g. $u = \frac{16}{16-1}$		1	A 1	
Use corr	the rect method for solving an equation of the formula $x = 0.0466$	m $4^x = a$,		41 A1 9709	9/32/M/J/15
Questio				5708	//J/10/10
-	he inequality $ x-2 > 2x - 3$.			[[4]

	State or imply non-modular inequality $(x-2)^2 > (2x-3)^2$, or corresponding equation	n B1	
	Solve a 3-term quadratic, as in Q1.	M1	
	Obtain critical value $x = \frac{5}{3}$	Al	
	State final answer $x < \frac{5}{3}$ only	A1	
OR1:	State the relevant critical linear inequality $(2-x) > (2x-3)$, or corresponding		
	equation	B1	
	Solve inequality or equation for x Obtain critical value $x = \frac{5}{3}$	M1 A1	
		1000	
	State final answer $x < \frac{5}{3}$ only	A1	
OR2:	Make recognisable sketches of $y = 2x - 3$ and $y = x - 2 $ on a single diagram	B 1	
	Find x-coordinate of the intersection	M1	
	Obtain $x = \frac{5}{3}$	A1	
	State final answer $x < \frac{5}{3}$ only	A1 97	709/33/M/J/15
Question			
Solve th	e inequality $ 2x - 5 > 3 2x + 1 $.		[4]
Answers			-
	State or imply non-modular inequality $(2x-5)^2 > (3(2x+1))^2$, or corresponding		
quadratic equation.	or pair of linear equations $(2x-5) = \pm 3(2x+1)$	B1	
	sonable solution attempt at a 3-term quadratic, or solve two linear equations for x	M1	
	itical values -2 and $\frac{1}{4}$	A1	1
	lanswer $-2 < x < \frac{1}{4}$	A1	
OR: Obta linear	in critical value $x = -2$ from a graphical method, or by inspection, or by solving a		
mou	or inequality	B1	
equation	itical value $x = \frac{1}{4}$ similarly	B2	
equation Obtain cr	itical value $x = \frac{1}{4}$ similarly lanswer $-2 < x < \frac{1}{4}$		2
equation Obtain cr State fina		B2	2
equation Obtain cr State fina [Do not c Question	l answer $-2 < x < \frac{1}{4}$ ondone \leq for $<]$ 76:	B2 B1	9709/32/O/N/15
equation Obtain cr State fina [Do not c Question Using th 3 signific	l answer $-2 < x < \frac{1}{4}$ ondone \leq for $<]$	B2 B1	9709/32/O/N/15
equation Obtain cr State fina [Do not c Question Using th 3 signific Answer:	l answer $-2 < x < \frac{1}{4}$ ondone \leq for $<]$ 76: e substitution $u = 3^x$, solve the equation $3^x + 3^{2x} = 3^{3x}$ giving your answe ant figures.	B2 B1	9709/32/O/N/15 et to [5]
equation Obtain cr State fina [Do not c Question Using th 3 signific Answer:	l answer $-2 < x < \frac{1}{4}$ ondone \leq for $<]$ 76: e substitution $u = 3^x$, solve the equation $3^x + 3^{2x} = 3^{3x}$ giving your answe ant figures. mply $1+u=u^2$	B2 B1	9709/32/O/N/15 ct to [5]
equation Obtain cr State fina [Do not c Question Using th 3 signific Answer: State or i Solve for	l answer $-2 < x < \frac{1}{4}$ ondone \leq for $<]$ 76: e substitution $u = 3^x$, solve the equation $3^x + 3^{2x} = 3^{3x}$ giving your answe ant figures. mply $1+u=u^2$	B2 B1 r correc B1	9709/32/O/N/15 et to [5]
equation Obtain cr State fina [Do not c Question Using th 3 signific Answer: State or i Solve for Obtain ro Use corre	l answer $-2 \le x \le \frac{1}{4}$ ondone \le for ≤ 1 76 : e substitution $u = 3^x$, solve the equation $3^x + 3^{2x} = 3^{3x}$ giving your answe ant figures. mply $1+u=u^2$ u to $\frac{1}{2}(1+\sqrt{5})$, or decimal in [1.61, 1.62] ext method for finding x from a positive root	B2 B1 r correc B1 M1 A1 M1	9709/32/O/N/15 ct to [5]
equation Obtain cr State fina [Do not c Question Using th 3 signific Answer: State or i Solve for Obtain ro Use corro Obtain x	l answer $-2 < x < \frac{1}{4}$ ondone \leq for $<]$ 76: e substitution $u = 3^x$, solve the equation $3^x + 3^{2x} = 3^{3x}$ giving your answe ant figures. mply $1+u=u^2$ u bot $\frac{1}{2}(1+\sqrt{5})$, or decimal in [1.61, 1.62] ect method for finding x from a positive root x = 0.438 and no other answer	B2 B1 r correct B1 M1 A1	9709/32/O/N/15 ct to [5]
equation Obtain cr State fina [Do not c Question Using th 3 signific Answer: State or i Solve for Obtain ro Obtain x Question	l answer $-2 \le x < \frac{1}{4}$ ondone \le for $<$] 76: e substitution $u = 3^x$, solve the equation $3^x + 3^{2x} = 3^{3x}$ giving your answe ant figures. mply $1+u=u^2$ to $\frac{1}{2}(1+\sqrt{5})$, or decimal in [1.61, 1.62] ext method for finding x from a positive root = 0.438 and no other answer 77:	B2 B1 r correc B1 M1 A1 M1 A1	9709/32/O/N/15 ct to [5]
equation Obtain cr State fina [Do not c Question Using th 3 signific Answer: State or i Solve for Obtain ro Obtain ro Obtain x Question (i) Solve	l answer $-2 < x < \frac{1}{4}$ ondone \leq for $<]$ 76: e substitution $u = 3^x$, solve the equation $3^x + 3^{2x} = 3^{3x}$ giving your answe ant figures. mply $1+u=u^2$ u bot $\frac{1}{2}(1+\sqrt{5})$, or decimal in [1.61, 1.62] ect method for finding x from a positive root = 0.438 and no other answer	B2 B1 r correct B1 M1 A1 M1 A1 (3)	9709/32/O/N/15 ct to [5]

Ansv (i)	vers: EITHER: State or imply non-modular equation $(2(x-1))$	$(1)^2 - (3r)^2$	or nair	of linear equations		
(I)	$2(x-1)=\pm 3x$	() = (3x),	or pan	of finear equations		
	Make reasonable solution attempt at a 3-term quadratic,	or solve tw	o linea	ar equations		
	Obtain answers $x = -2$ and $x = \frac{2}{5}$			-		
	<i>OR</i> : Obtain answer $x = -2$ by inspection or by solving a Obtain answer $x = \frac{2}{5}$ similarly	linear equa	tion			
(ii)	Use correct method for solving an equation of the form	$5^x = a \text{ or } 5^x$	$x^{+1} = a$, where $a > 0$		
	Obtain answer $x = -0.569$ only			970	9/31/M/J/	16
Solv	stion 78: we the inequality $2 x - 2 > 3x + 1 $.					[4]
	vers: $IID_{1} State = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1$. 1)2		l'an and a dia		
	<i>IER</i> : State or imply non-modular inequality $(2(x-2))^2 > (3x)$ tion, or pair of linear equations $2(x-2) = \pm (3x+1)$	$(+1)^{\circ}$, or cor	respon	ding quadratic B1		
-	e reasonable solution attempt at a 3-term quadratic, or solve	two linear e	quation			
	in critical values $x = -5$ and $x = \frac{3}{5}$		•	A1		
State	final answer $-5 < x < \frac{3}{5}$			A1		
	Obtain critical value $x = -5$ from a graphical method, or by i	inspection, o	r by so			
-	tion or inequality in critical value $x = \frac{3}{5}$ similarly			(B1 B2		
	final answer $-5 < x < \frac{3}{5}$		5	B2 B1)		
	not condone \leq for $<$.]			[4]		
-	//33/M/J/16			1.1		
	stion 79:	0				
(i)]	Express $x^2 + 6x + 2$ in the form $(x + a)^2 + b$, where a an	d b are con	stants.	. [2]		
	Hence, or otherwise, find the set of values of x for which vers:	h $x^2 + 6x +$	2 > 9.	[2]		
(i)		DIDI		For a = 2 $h = -7$	7	
	$(x+3)^2 - 7$	B1B1	[2]	For $a = 3, b = -7$		
(ii)	1,-7 seen	B1		x>1 or x<-7		
	x > 1, x < -7 oe	B1	[Tal	Allow $x \leq -7, x \geq 1$ of	e	
			[2]	07	00/14/0/	
-	stion 80:				09/11/0/	N/16
Solv	we the equation $\frac{3^x + 2}{3^x - 2} = 8$, giving your answer co	orrect to 3	decir	nal places.		[3]
	vers:					
Solv	the for 3^x and obtain $3^x = \frac{18}{7}$				B1	
Use	correct method for solving an equation of the form 3 ^a	a = a, when	e a > (0	M1	
Obt	ain answer $x = 0.860$ 3 d.p. only				A1	[3]
0.00	stion 81:			97	09/31/O/	N/16
	We the inequality $ x-3 < 3x - 4$.					[4]
	vers:					

EITHER:	(B	1
State or imply non-modular inequality $(x-3)^2 < (3x-4)^2$, or corresponding equation		
Make reasonable attempt at solving a three term quadratic	М	1
Obtain critical value $x = \frac{7}{4}$	A	1
State final answer $x > \frac{7}{4}$ only	Al)
OR1: State the relevant critical inequality $3-x < 3x-4$, or corresponding equation	(B	1
Solve for <i>x</i>	М	1
Obtain critical value $x = \frac{7}{4}$	A	1
State final answer $x > \frac{7}{4}$ only	Al)
<i>OR</i> 2: Make recognizable sketches of $y = x-3 $ and $y = 3x - 4$ on a single diagram	(B	1
Find x-coordinate of the intersection	М	1
Obtain $x = \frac{7}{4}$	A	1
State final answer $x > \frac{7}{4}$ only	Al)
	T-4-1	-
	Total:	⁴ 9709/32/M/J/17
Question 82: Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer:		_
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye		ect to 3 significant
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer:	our answer corre	ect to 3 significant
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent	our answer corre B1	ect to 3 significant
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u	Bl Ml Al	ect to 3 significant [4]
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$	our answer corre B1 M1	ect to 3 significant
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$ Obtain answer $x = -0.405$ and no other Question 82:	Bl Ml Al	ect to 3 significant [4]
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$ Obtain answer $x = -0.405$ and no other Question 82: It is given that the variable x is such that	Bl Ml Al Al	ect to 3 significant [4] 9709/33/M/J/17
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$ Obtain answer $x = -0.405$ and no other Question 82: It is given that the variable x is such that $1.3^{2x} < 80$ and $ 3x - 1 > 3x - 10 $. Find the set of possible values of x , giving your answer in the form $a < x < b$	Bl Ml Al Al	ect to 3 significant [4] 9709/33/M/J/17 nts <i>a</i>
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$ Obtain answer $x = -0.405$ and no other Question 82: It is given that the variable x is such that $1.3^{2x} < 80$ and $ 3x - 1 > 3x - 10 $. Find the set of possible values of x , giving your answer in the form $a < x < b$ and b are correct to 3 significant figures.	Bl Ml Al Al	ect to 3 significant [4] 9709/33/M/J/17 nts <i>a</i>
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$ Obtain answer $x = -0.405$ and no other Question 82: It is given that the variable x is such that $1.3^{2x} < 80$ and $ 3x - 1 > 3x - 10 $. Find the set of possible values of x , giving your answer in the form $a < x < b$ and b are correct to 3 significant figures.	Bl Ml Al Al	ect to 3 significant [4] 9709/33/M/J/17 nts <i>a</i>
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$ Obtain answer $x = -0.405$ and no other Question 82: It is given that the variable x is such that $1.3^{2x} < 80$ and $ 3x - 1 > 3x - 10 $. Find the set of possible values of x , giving your answer in the form $a < x < b$ and b are correct to 3 significant figures.	Bl Ml Al Al	ect to 3 significant [4] 9709/33/M/J/17 nts <i>a</i>
Using the substitution $u = e^x$, solve the equation $4e^{-x} = 3e^x + 4$. Give ye figures. Answer: Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$ Obtain answer $x = -0.405$ and no other Question 82: It is given that the variable x is such that $1.3^{2x} < 80$ and $ 3x - 1 > 3x - 10 $. Find the set of possible values of x , giving your answer in the form $a < x < b$ and b are correct to 3 significant figures.	Bl Ml Al Al	ect to 3 significant [4] 9709/33/M/J/17 nts <i>a</i>

Take logarithms of both sides and apply power law	Ml	Condone incorrect inequality signs until final answer. The first 6 marks are for obtaining the correct critical values.	
Obtain $2x < \frac{\ln 80}{\ln 1.3}$ or equivalent using \log_{10}	Al		
Obtain $x = 8.35$	Al		
State or imply non-modulus inequality $(3x-1)^2 > (3x-10)^2$ or corresponding equation or linear equation $3x-1 = -(3x-10)$	Bl		
Attempt solution of inequality or equation (obtaining 3 terms when squaring each bracket or solving linear equation with signs of $3x$ different)	МІ	0	
Obtain $x = \frac{11}{6}$ or $x = 1.83$	Al		
Conclude 1.83 < <i>x</i> < 8.35	Al	:0.	9709/21/O/N/17
Question 83:			
Solve the inequality $ 3x-2 < x+5 $. Answer:			[4]
Either			
State or imply non-modular inequality $(3x-2)^2 <$ equation or pair of linear equations	$(x+5)^2$ or	corresponding B	L
Attempt solution of 3-term quadratic equation or e		quations M	L
Obtain critical values $-\frac{3}{4}$ and $\frac{7}{2}$		A	L
State answer $-\frac{3}{4} < x < \frac{7}{2}$		A	L
<u>Or</u>			_
Obtain critical value $\frac{7}{2}$ from graph, inspection, equ	uation	В	L
Obtain critical value $-\frac{3}{4}$ similarly		B	2
State answer $-\frac{3}{4} < x < \frac{7}{2}$		В	9709/22/M/J/18

Question 84:

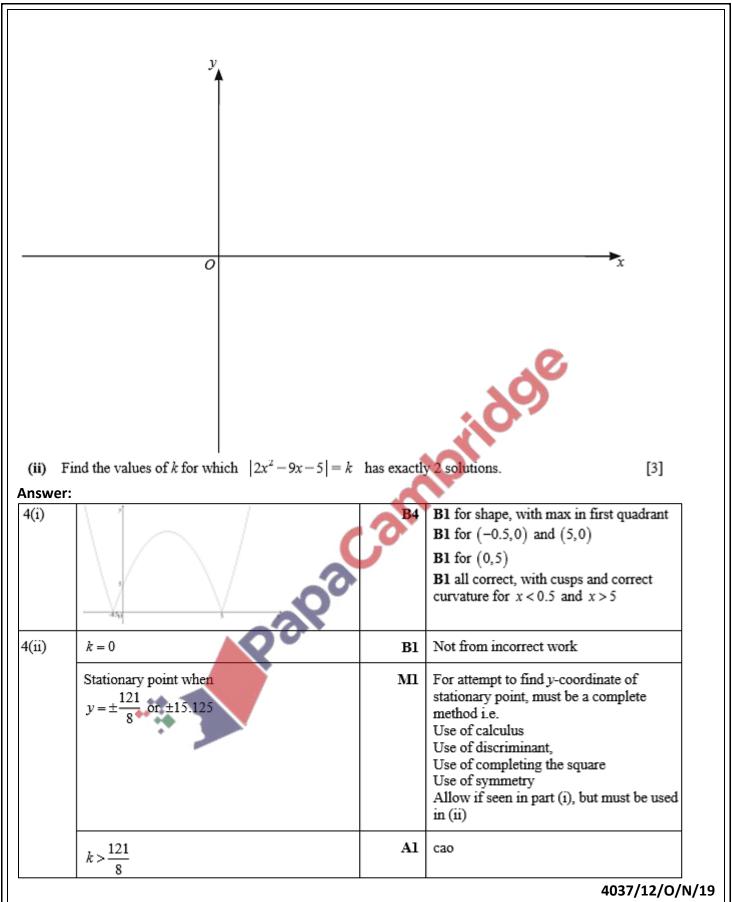
Showing all necessary working, solve the equation $3|2^x - 1| = 2^x$, giving your answers correct to 3 significant figures. [4]

Answers:

EITHER:	State or imply non-modular equation $3^{2}(2^{x}-1)^{2} = (2^{x})^{2}$, or pair of equations	Ml	$8(2^{x})^{2}-18(2^{x})+9$	9 = 0
	$3(2^{x}-1)=\pm 2^{x}$			
	Obtain $2^x = \frac{3}{2}$ and $2^x = \frac{3}{4}$ or equivalent	Al		
OR:	Obtain $2^x = \frac{3}{2}$ by solving an equation	Bl		
	Obtain $2^x = \frac{3}{4}$ by solving an equation	Bl		
Use correct $2^x = a$, where $a = a$	method for solving an equation of the form ere $a > 0$	Ml		
Obtain final	l answers $x = 0.585$ and $x = -0.415$ only	Al	The question requi Do not ISW if they	res 3 s.f. go on to reject one valu
Showing a blaces. Inswer:	all necessary working, solve the equation 5	$5^{2x} = 5^x + 5.$ G	ive your answer	correct to 3 decima
State or imp	ply $u^2 = u + 5$, or equivalent in 5^x		Bl	
Solve for <i>u</i> ,	, or 5 ^x		м	-
Obtain root	$\frac{1}{2}(1+\sqrt{21})$, or decimal in [2.79, 2.80]	9	Al	
Üse correct	method for finding x from a positive root		м	
	ver $x = 0.638$ and no other answer		Al	9709/33/M/J/18
Question 8 Solve the i Inswers:	inequality $ 3x - 5 < 2 x $.			[4]

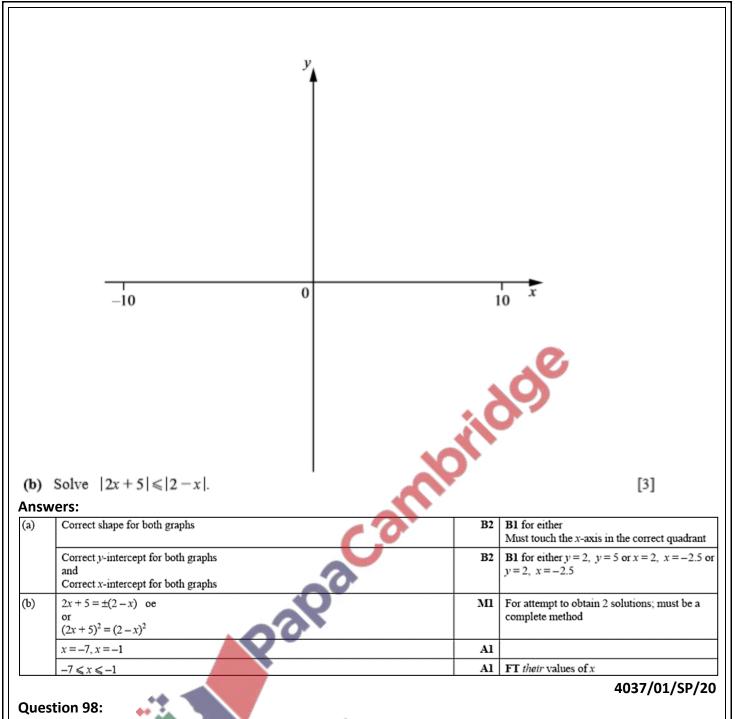
Either						
State or imply non-modular inequality $(3x-5)^2 < 4x^2$ or corresponding BI SC: Common error $(3x-5)^2 < 2x^2$ equation or pair of linear equations						
Attempt solution of 3-term quadratic equation or solution of 2 linear MI equations						
Obtain critical values 1 and 5	Al	Critical values $\frac{15\pm5\sqrt{7}}{7}$	² / ₂ or 3.15, 1.13 allow B1			
State correct answer $1 < x < 5$ A1 $\frac{15 - 5\sqrt{2}}{7} < x < \frac{15 + 5\sqrt{2}}{7}$ or $1.13 < x < 3.15$ B1 Max 2/4 Allow M1 for $(7x \pm 5)(x \pm 5)$						
Or						
Obtain $x = 5$ by solving linear equation or inequality or from graphical method or inspection	Bl	Allow B1 for 5 seen, m	aybe in an inequality			
Obtain $x = 1$ similarly	B2	Allow B2 for 1 seen, m	aybe in an inequality			
State correct answer $1 < x < 5$	B1					
Question 87: 9709/22/O/N/18 Find the set of values of x satisfying the inequality $2 2x - a < x + 3a $, where a is a positive constant. [4] Answers: EITHER: State or imply non-modular inequality B1						
$2^{2}(2x-a)^{2} < (x+3a)^{2}, \text{ or corresponding quadratic equation, or pair of}$ linear equations $2(2x-a) = \pm (x+3a)$						
Make reasonable attempt at solving a 3-term quadratic, or solve two linear M1 equations for x						
Obtain critical values $x = \frac{5}{3}a$ and $x = -\frac{1}{5}a$ Al						
State final answer $-\frac{1}{5}a < x < \frac{5}{3}a$	Al	_				
<i>OR</i> : Obtain critical value $x = \frac{5}{3}a$ from a graphical method,	ction, or B1					
by solving a linear equation or an inequality						
Obtain critical value $x = -\frac{1}{5}a$ similarly	B2	,				
State final answer $-\frac{1}{5}a < x < \frac{5}{3}a$		Bl				
[Do not condone \leq for \leq in the final answer.] 9709/31/O/N/18						
Question 88: Showing all necessary working, solve the equation $\frac{2e^x + e^{-x}}{e^x - e^{-x}} = 4$, giving your answer correct to 2 decimal places. [4] Answer:						

Obtain correct equation in either form with $a = 2$ and $b = 5$ A1 Use correct method to solve for x M1 Obtain answer $x = 0.46$ A1 Image: the solution of the solution the solution the solution the solution of the solution of the solution of the solution of the solution t	Rea	rrange the equation in the form $ae^{2x} = b$ or $ae^x = be^{-x}$				M1	
Obtain answer $x = 0.46$ A1 9709/31/0/ Question 89: (i) Solve the inequality $ 3x - 5 < x + 3 $. (ii) Hence find the greatest integer <i>n</i> satisfying the inequality $ 3^{0.1n+1} - 5 < 3^{0.1n} + 3 $. (iii) Hence find the greatest integer <i>n</i> satisfying the inequality $ 3^{0.1n+1} - 5 < 3^{0.1n} + 3 $. (i) State or imply non-modular inequality $(3x - 5)^2 < (x + 3)^2$ or corresponding equation or pair of different linear equations/inequalities (ii) Attempt solution of 3-term quadratic equation/inequality or of two different linear equations/inequalities (iii) Attempt to find <i>n</i> (not necessarily an integer so far) from 3 ^{th n} - or < hor positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 3 × their positive upper value from part (0) or 3 ^{th n+1} - or < 1 > 5 ^{th n+1} - or < 1 > 5 ^{th n+1} - or < 1 > 5 ^{th n+1} - 5 ^{th n+1}	Obtain correct equation in either form with $a = 2$ and $b = 5$						
4 9709/31/0/ Question 89: (1) Solve the inequality $ 3x - 5 < x + 3 $. (4) (1) Solve the inequality $ 3x - 5 < x + 3 $. (4) (1) Solve the inequality $ 3x - 5 < x + 3 $. (1) State or imply non-modular inequality $(3x - 5)^2 < (x + 3)^2$ or corresponding equations or pair of different linear equations/inequalities (1) Attempt solution of 3-term quadratic equation/inequality or of two different linear equations inequalities Obtain critical values $\frac{1}{2}$ and 4 A1 Obtain critical values $\frac{1}{2}$ and 4 A1 If gruen to 2 separate statements, condone omission or a tup penalise inclusion of "or" or \cup MI Obtain critical values $\frac{1}{2}$ and 4 A1 If gruen to 2 separate statements, condone omission or a "out penalise inclusion of "or" or \cup MI 02 for thal and improvement Set the positive upper value from part (0) or $\frac{3^{10+1}}{3^{10+1}} = or < 3 \times their positive upper value from part (0) or \frac{3^{10+1}}{3^{10+1}} = or < 3 \times their positive upper value from par$	Use correct method to solve for <i>x</i>					M1	
Question 89: [4] (i) Solve the inequality $ 3x - 5 < x + 3 $. [4] (ii) Hence find the greatest integer <i>n</i> satisfying the inequality $ 3^{0.1n+1} - 5 < 3^{0.1n} + 3 $. [2] Answers: [6] State or imply non-modular inequality $(3x - 5)^2 < (x + 3)^2$ or corresponding equation of pair of different linear equations/inequalities B1 SC: Allow B1 for $x < 4$ from only one linear inequality or of two different linear equations/inequalities B1 SC: Allow B1 for $x < 4$ from only one linear inequality or of two different linear equations/inequalities Dotain critical values $\frac{1}{2}$ and 4 A1 For M1, must get as far is 2 critical values (ii) Attempt to find <i>n</i> (not necessarily an integer so far) from $3^{0.1n+1} = \alpha < 5 kite prositive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part$	Obtain answer $x = 0.46$					A1	
Question 89: [4] (i) Solve the inequality $ 3x - 5 < x + 3 $. [4] (ii) Hence find the greatest integer <i>n</i> satisfying the inequality $ 3^{0.1n+1} - 5 < 3^{0.1n} + 3 $. [2] Answers: [3] (ii) State or imply non-modular inequality $(3x - 5)^2 < (x + 3)^2$ or corresponding equation of pair of different linear equations/inequalities [4] (iii) State or imply non-modular inequality $(3x - 5)^2 < (x + 3)^2$ or corresponding equation of a term quadratic equations/inequalities [6] SC: Allow B1 for $x < 4$ from only one linear inequality or of two different linear equations/inequalities [6] [7] [8] SC: Allow B1 for $x < 4$ from only one linear inequality or of two different linear equations/inequalities [8] SC: Allow B1 for $x < 4$ from only one linear inequality $3^{0.1n+1} - 5 < 3^{0.1n} + 3 $. [2] (ii) State answer $\frac{1}{2} < x < 4$ or equivalent [4] [4] [4] State answer $\frac{1}{2} < x < 4$ or equivalent [4] [4] [4] [4] (iii) Attempt to find <i>n</i> (not necessarily an integer so far) from $3^{0.1n} = \alpha < 5^{0.1n}$ positive upper value from part (i) or $3^{0.1n} = \alpha < 3 \times their$ positive upper value from part (i) or $3^{0.1n+1} = \alpha < 3 \times their$ positive upper value from part (i) or $3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \alpha < 3 \times their positive uppe$						4	
(i) Solve the inequality $ 3x - 5 < x + 3 $. [4] (ii) Hence find the greatest integer <i>n</i> satisfying the inequality $ 3^{0.1n+1} - 5 < 3^{0.1n} + 3 $. [2] Answers: [4] (iii) Hence find the greatest integer <i>n</i> satisfying the inequality $ 3^{0.1n+1} - 5 < 3^{0.1n} + 3 $. [2] Answers: [4] (iii) State or imply non-modular inequality $(3x - 5)^2 < (x + 3)^2$ or corresponding equation or pair of different linear equations/inequalities B1 SC: Allow B1 for $x < 4$ from only one linear inequality $(3x - 5)^2 < (x + 3)^2$ or different linear equations/inequalities (iii) Attempt solution of 3-term quadratic equation/inequality or of two different linear equations/inequalities M1 For M1, must get as far as 2 critical values (iii) Attempt to find <i>n</i> (not necessarily an integer so far) from $3^{41n} = \alpha < 4 + \alpha + 1$ M1 0^2 for trial and improvement $3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their positive upper value from part (i) or 3^{41n+1} = \alpha < 3 > their > 5 < 5 < 5^{41}, proved to a significant $	0	ation 90.				97	09/31/O/N/18
(ii) Hence find the greatest integer <i>n</i> satisfying the inequality $ 3^{0.1n+1} - 5 < 3^{0.1n} + 3 $. [2] Answers: (i) State or imply non-modular inequality $(3x - 5)^2 < (x + 3)^2$ or corresponding equation or pair of different linear equations/inequalities Attempt solution of 3-term quadratic equation/inequality or of two different linear equations/inequality and the set of th	•						[4]
Answers: State or imply non-modular inequality $(3x-5)^2 < (x+3)^2$ or corresponding equation or pair of different linear equations/inequalities B1 SC: Allow B1 for $x < 4$ from only one linear inequality inequality or of two different linear equations/inequality or of two different linear equations/inequality or of two different linear equations/inequalities B1 SC: Allow B1 for $x < 4$ from only one linear inequality different linear equations/inequalities (i) Attempt solution of 3-term quadratic equation/inequality or of two different linear equations/inequalities A1 For M1, must get as far as 2 critical values (ii) State answer $\frac{1}{2} < x < 4$ or equivalent A1 If given as 2 separate statements, condone omission or a the penalise inclusion of 'or or \bigcirc (iii) Attempt to find <i>n</i> (not necessarily an integer so far) from $3^{0.1n} = \text{or } < 1 \text{ where positive upper value from part (i)}$			30.1n	+1 _ 5	$ < 3^{0.1n} +$	31	
(i) State or imply non-modular inequality $(3x-5)^2 < (x+3)^2$ or corresponding equation or pair of different linear equations/inequalities B1 SC: Allow B1 for $x < 4$ from only one linear inequality corresponding equation or pair of different linear equations/inequalities Attempt solution of 3-term quadratic equation/inequality or of two different linear equations/inequalities M1 For M1, must get as far as 2 critical values Obtain critical values $\frac{1}{2}$ and 4 A1 A1 State answer $\frac{1}{2} < x < 4$ or equivalent A1 If given as 2 separate statements, condone omission of a but penalise inclusion of 'or' or \cup (ii) Attempt to find <i>n</i> (not necessarily an integer so far) from $3^{61x_1} = or < 3 \times their$ positive upper value from part (i) or $3^{61x_1} = or < 3 \times their$ positive upper value from part (i) M1 02 for trial and improvement Question 90: (i) Solve the equation $ 4 + 2x = 3 - 5x $. [3] (ii) Hence solve the equation $ 4 + 2e^{3y} = 3 - 5e^{3y} $, giving the answer correct to 3 significant figures. [2] Answers: [3] (iii) State or imply non-modular equation $(4+2x)^2 = (3-5x)^2$ or pair of pair of linear equations B1 (iii) State or imply non-modular equation $(4+2x)^2 = (3-5x)^2$ or pair of pair of linear equations B1 (iv) Obtain $-\frac{1}{7}$, $\frac{2}{3}$ A1 SC B1 for $x = -\frac{1}{7}$ from			5	- 5	1 1 1	- P	[2]
different linear equations/inequalities Al Obtain critical values $\frac{1}{2}$ and 4 Al State answer $\frac{1}{2} < x < 4$ or equivalent Al (ii) Attempt to find <i>n</i> (not necessarily an integer so far) from $3^{0.1n} = \text{ or } < their positive upper value from part (i) or 3^{0.1n+1} = \text{ or } < 3 \times their positive upper value from part (i) or 3^{0.1n+1} = \text{ or } < 3 \times their positive upper value from part (i)$	-	State or imply non-modular inequality $(3x-5)^2 < (x+3)^2$ or	B1	SC: Al	low B1 for $x < c$	4 from only on	e linear inequality
Solution Hinder Values $\frac{1}{2}$ and $\frac{1}{2}$ State answer $\frac{1}{2} < x < 4$ or equivalent (ii) Attempt to find n (not necessarily an integer so far) from $3^{01n} = or < their positive upper value from part (i) or3^{01n+1} = or < 3 \times their positive upper value from part (i) or3^{01n+1} = or < 3 \times their positive upper value from part (i) or3^{01n+1} = or < 3 \times their positive upper value from part (i)$			MI	For M	l, must get as fa	r as 2 critical va	alues
(ii) Attempt to find n (not necessarily an integer so far) from 3 ^{0 ln} = or < their positive upper value from part (i) or 3 ^{0 ln+1} = or < 3 × their positive upper value from part (i)		Obtain critical values $\frac{1}{2}$ and 4	A1		20	5	
(ii) Attempt to find <i>n</i> (not necessarily an integer so far) from $3^{0 \ln n} = \text{ or } < \text{their positive upper value from part (i) or} \\ 3^{0 \ln n-1} = \text{ or } < 3 \times \text{their positive upper value from part (i)} \\ \hline \text{Conclude 12} \\ \hline \text{Conclude 12} \\ \hline \text{Ouestion 90:} \\ (i) Solve the equation 4 + 2x = 3 - 5x . [3](ii) Hence solve the equation 4 + 2e^{3y} = 3 - 5e^{3y} , giving the answer correct to 3 significant figures. [2]Answers:(i) State or imply non-modular equation (4 - 2x)^2 = (3 - 5x)^2 or pairof linear equations \hline \text{Attempt solution of 3-term quadratic eqn or pair of linear equations} \\ \hline \text{Obtain } -\frac{1}{7}, \frac{2}{3}\hline \text{Obtain } -\frac{1}{7}, \frac{2}$		State answer $\frac{1}{2} < x < 4$ or equivalent	Al				
Question 90: [3] (i) Solve the equation $ 4 + 2x = 3 - 5x $. [3] (ii) Hence solve the equation $ 4 + 2e^{3y} = 3 - 5e^{3y} $, giving the answer correct to 3 significant figures. [2] Answers: [3] (i) State or imply non-modular equation $(4+2x)^2 = (3-5x)^2$ or pair of linear equations B1 (i) State or imply non-modular equation $(4+2x)^2 = (3-5x)^2$ or pair of linear equations M1 Obtain $-\frac{1}{7}, \frac{7}{3}$ A1 SC B1 for $x = -\frac{1}{7}$ from one linear equation 3 3 3	(ii)	$3^{0.1n} = \text{ or } < \text{their positive upper value from part (i) or}$	The probability is a set of the probability of the probability of the probability $n = \text{or} < their$ positive upper value from part (i) or $n = 0.25 \text{ for trial and improvement}$				
Question 90: [3] (i) Solve the equation $ 4 + 2x = 3 - 5x $. [3] (ii) Hence solve the equation $ 4 + 2e^{3y} = 3 - 5e^{3y} $, giving the answer correct to 3 significant figures. [2] Answers: [3] (i) State or imply non-modular equation $(4 + 2x)^2 = (3 - 5x)^2$ or pair of linear equations B1 (i) Attempt solution of 3-term quadratic eqn or pair of linear equations M1 Obtain $-\frac{1}{7}, \frac{7}{3}$ A1 SC B1 for $x = -\frac{1}{7}$ from one linear equation		Conclude 12	Al				
Attempt solution of 3-term quadratic eqn or pair of linear equations MI Obtain $-\frac{1}{7}$, $\frac{7}{3}$ A1 SC B1 for $x = -\frac{1}{7}$ from one linear equations 3	(i) (ii) Ansv	Solve the equation $ 4 + 2x = 3 - 5x $. Hence solve the equation $ 4 + 2e^{3y} = 3 - 5e^{3y} $, giving the vers: State or imply non-modular equation $(4+2x)^2 = (3-5x)^2$ or pair	answ		rect to 3 sig		[3]
Obtain $-\frac{1}{7}$, $\frac{7}{3}$ Al SC B1 for $x = -\frac{1}{7}$ from one linear equation of the second				м			
$\mathbf{SC B1 \text{ for } x = -\frac{1}{7} \text{ from one linear eq}}$							
		Obtain $-\frac{1}{7}$, $\frac{7}{3}$		Al	SC B1 for x	$r = -\frac{1}{7}$ from	one linear equation
(ii) Attempt correct process to solve $e^{3y} = k$ where $k > 0$ from (i) MI				3			
		Attempt correct process to solve $e^{3y} = k$ where $k > 0$ from (i)		MI			
Obtain 0.282 and no others A1	(ii)	Obtain 0.282 and no others		Al			
9709/22/M	(ii)					97	09/22/M/J/19

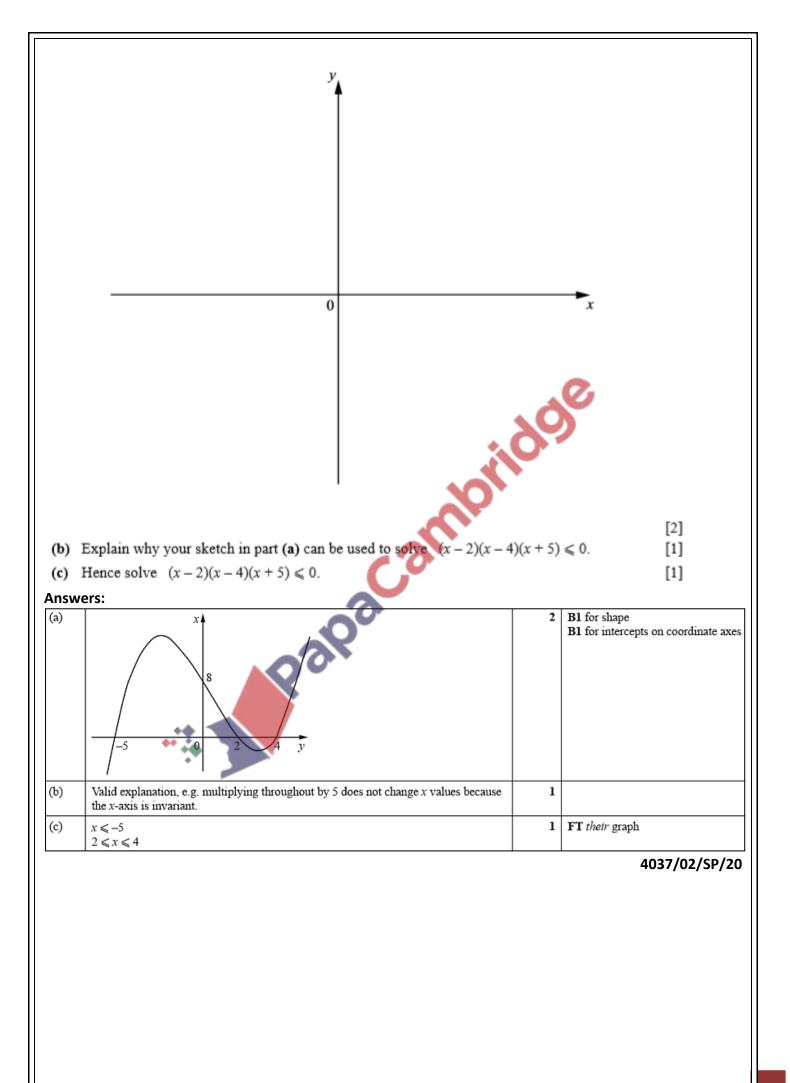

Answer:

State c	or imply $u^2 - u - 12(=0)$, or equivalent in 3^x	B1	Need	to be convinced they know $3^{2x} = (3^x)^2$		
Solve	for u , or for 3^x , and obtain root 4	B1				
Use a where	correct method to solve an equation of the form $3^x = a$ a > 0	м	to use e.g. x If see	to see evidence of method. Do not penalise an attempt e the negative root as well. $\ln 3 = \ln a$, $x = \log_3 a$ n, accept solution of straight forward cases such as $3^x =$ 1 without working		
Obtain	a final answer $x = 1.26$ only	Al	The Q	Q asks for 2 dp		
(i) S	tion 92: Solve the inequality $ 2x - 7 < 2x - 9 $. Hence find the largest integer <i>n</i> satisfying the ine ver:	equality 2 Ir	n – 7	9709/32/M/J/1 [3] $ < 2 \ln n - 9 .$ [2]		
(i)	State or imply non-modular inequality $(2x-7)^2 < (2x-9)^2$ or corresponding equation or linear equation (with signs of $2x$ different)					
	Obtain critical value 4					
	State $x < 4$ only					
(11)	Attempt to find <i>n</i> from $\ln n = their$ critical value from part (i)					
	Obtain or imply $n < e^4$ and hence 54		\mathbf{V}	9709/21/O/N/19		
(i) S ii) F	Solve the equation $ 4x + 5 = x - 7 $. Hence, using logarithms, solve the equation $ 2^{x} $ significant figures.	² + 5] = 2 ⁱ	⁷ – 7 ,	[3] , giving the answer correct to [2]		
(i)	State or imply non-modular equation $(4x+5)^2 = (x-7)^2$ of different linear equations	or pair of	B1			
	Attempt solution of 3-term quadratic equation or pair of linequations	near	MI			
	Obtain $\frac{2}{5}$ and -4		A1	SC For $x = -4$ only, from correct work, allow B1		
ii)	Apply logarithms and use power law for $2^{y} = k$ where $k > from$ (i)	> 0	MI			

Question 94: Solve the inequality |2x-3| > 4|x+1|.


[4]

State or imply non-modular inequality $(2x-3)^2 > 4^2 (x+1)^2$, or corresponding quadratic equation, or pair of linear equations $(2x-3)=\pm 4(x+1)$	Bl	$12x^2 + 44x + 7 < 0$			
Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	MI	Correct method seen, or implied by correct answers			
Obtain critical values $x = -\frac{7}{2}$ and $x = -\frac{1}{6}$	Al				
State final answer $-\frac{7}{2} < x < -\frac{1}{6}$	Al				
Alternative method for question 2					
Obtain critical value $x = -\frac{7}{2}$ from a graphical method, or by inspection, or by solving a linear equation or an inequality	Bl				
Obtain critical value $x = -\frac{1}{6}$ similarly	B2	.0.			
State final answer $-\frac{7}{2} < x < -\frac{1}{6}$	BI	0			
Question 95: Solve the inequality $2 x+2 > 3x-1 $.	orill	9709/31/O/N/19 [4]			
State or imply non-modular inequality $(x+2)^2 > (3x-1)^2$, or correspond quadratic equation, or pair of linear equations $2(x+2) = \pm (3x-1)$ Make reasonable attempt at solving a 3-term quadratic or solve two line for x		ns			
Obtain critical values $x = -\frac{3}{5}$ and $x = 5$					
State final answer $-\frac{3}{5} < x < 5$					
Alternative method for question 1					
Obtain critical value $x = 5$ from a graphical method, or by inspection, or by solving a linear equation or an inequality					
Obtain critical value $x = -\frac{3}{5}$ similarly					
State final answer $-\frac{3}{5} < x < 5$		9709/33/O/N/19			
Question 96: (i) On the axes below, sketch the graph of $y = 2x^2 - 9x - 5 $ showhere the graph meets the axes.	owing the				



Question 97:

(a) On the axes below, sketch the graph of y = |2x + 5| and the graph of y = |2 - x|, stating the coordinates of the points where each graph meets the coordinate axes. [4]

(a) On the axes below, sketch the graph of $y = \frac{1}{5}(x-2)(x-4)(x+5)$, showing the coordinates of the points where the graph meets the coordinate axes.

