

Cambridge IGCSE™

CO-ORDINATED SCIENCES		0654/42
Paper 4 Theory (Extended)		October/November 2024
MARK SCHEME		
Maximum Mark: 120		
	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond
 the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 <u>'List rule' guidance</u>

For questions that require *n* responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards *n*.
- Incorrect responses should not be awarded credit but will still count towards *n*.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be
 awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this
 should be treated as a single incorrect response.
- Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Question		Answer	Marks
1(a)(i)	X pulmonary artery;		3
	Y kidney;		
	Z vena cava ;		
1(a)(ii)	(one circulation) to the lungs	;	2
	(one circulation) to the (rest c	f) body (tissues) ;	
1(b)(i)	any two from:		2
	A;		
	В;		
	AB;		
	Ο;		
1(b)(ii)	antibody production		2
	blood clotting		
	phagocytosis		
	transport of hormones		
	transport of oxygen		
	1 mark for each correct tick ;;		

Question	Answer	Marks
1(c)(i)	(1/0.0005 =) 2000;	1
1(c)(ii)	(artery wall is thick to withstand / maintain) high (blood) pressure;	2
	(capillary wall is thin) to provide a short diffusion distance / AW;	

Question			Answer	Marks
2(a)	reaction between an acid and a metal			2
	reaction between an alkali metal and water			
	respiration	✓		
	thermal decomposition of calcium carbonate	✓		
	1 mark for each correct tick ;;			
2(b)	(idea that) carbon dioxide is a greenhouse gas / t	here is	an (enhanced) greenhouse effect ;	2
	(increased concentrations of greenhouse gases	cause)	climate change ;	
2(c)	acidic;			2
	carbon is a non-metal ;			
2(d)(i)	covalent;			1

Question	Answer	Marks
2(d)(ii)	double bonds between C and O atoms correct; rest of structure correct;	2

Question	Answer	Marks
3(a)	does ${f not}$ release ${\sf CO_2}$ / does ${f not}$ release greenhouse gases / does ${f not}$ contribute to global warming / climate change / ${f not}$ fuel costs / renewable / AVP ;	1
3(b)	sinusoidal waveform;	2
	constant time period and amplitude;	
3(c)	(soft) <u>iron</u> core ;	3
	two coils wrapped around the same core ;	
	number of turns on primary less than secondary / number of turns on secondary more than primary;	
3(d)	evidence of $F = P \times A$ or 7200×90 ;	2
	650 000 (N);	
3(e)(i)	20 (Hz) ;	1
3(e)(ii)	(direction of) oscillations are parallel to direction of energy transfer;	1

Question	Answer	Marks
4(a)	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$	2
	one mark for correctly balanced reactants (either order); one mark for correctly balanced products (either order);	
4(b)	35;	5
	kinetic;	
	successful / effective / frequent;	
	denatured;	
	active site;	
4(c)	light;	2
	chemical;	
4(d)	starch;	2
	sucrose;	
4(e)	palisade mesophyll (cell);	2
	root hair (cell);	

Question	Answer	Marks
5(a)(i)	D ;	1
5(a)(ii)	D ;	1
5(a)(iii)	addition polymerisation ;	1

Question	Answer	Marks
5(a)(iv)	addition of steam;	2
	using a catalyst;	
5(a)(v)	general formula;	2
	chemical properties ;	
5(b)(i)	(carbon has) 4 electrons in the outer shell;	1
5(b)(ii)	diagram showing:	3
	6 protons ;	
	6 electrons in the correct configuration of 2.4;	
	any number of neutrons other than 6;	

Question	Answer	Marks
6(a)(i)	evidence of $v = f \lambda$ or $(5.0 \times 10^{14}) \times (4.5 \times 10^{-7})$;	2
	$2.3 \times 10^{8} \text{ (m/s)}$;	
6(a)(ii)	use of $3.0 \times 10^8 (m / s)$;	3
	evidence of $n = c \div v$ or $3 \times 10^8 \div 2.3 \times 10^8$;	
	1.3;	
6(b)(i)	(evidence of KE =) $\frac{1}{2} mv^2$ or $0.5 \times 28 \times 0.11^2$;	2
	(KE =) 0.17 (J);	

Question	Answer	Marks
6(b)(ii)	weight;	3
	upthrust and drag;	
	acceleration;	

Question	Answer	Marks
7(a)(i)	24 ;	2
	12;	
7(a)(ii)	gamete(s) / sex (cell) / haploid (cell) ;	1
7(a)(iii)	duplication / replication, of chromosomes ;	1
7(a)(iv)	diploid;	1
7(a)(v)	paired;	1
7(b)	any two from:	2
	growth;	
	repair (of damaged tissues / cells);	
	replacement (of cells);	
	asexual reproduction;	

Question	Answer	Marks
8(a)	C ;	1
8(b)	$(M_{\rm r} \text{ of CO}_2 =) 44;$	3
	(moles of $CO_2 = 1.2 \div 24 =) 0.05$;	
	(mass of $CO_2 = 0.05 \times 44 =) 2.2 (g)$;	
8(c)	(reaction in which) energy is given out / heat is given out ;	1
8(d)(i)	minimum amount of energy;	2
	required for reaction to take place ;	
8(d)(ii)	(reaction) X;	3
	(because) Z is endothermic / Z does not give out heat (energy) ;	
	(because) X has a lower activation energy than Y / X gives out more energy / heat than Y ;	

Question	Answer	Marks
9(a)(i)	any temperature in the inclusive range 36–50 (°C);	2
	2.0 cm reduces the rate of conduction (to the surroundings) more than 1.0 cm but less than 3.0 cm / OWTTE;	
9(a)(ii)	thermocouple;	1
9(b)	evidence of $(I =) P \div V$ or $1800 \div 240$;	4
	(I =) 7.5 (A);	
	evidence of $R = V \div I$ or 240 \div 7.5;	
	$(R =) 32 (\Omega)$;	

Question	Answer	Marks
9(c)(i)	move away from each other;	2
	like charges repel;	
9(c)(ii)	friction (with another surface);	3
	transfer of electrons;	
	(particles move) from the plastic / to the surface it is rubbing against;	

Question	Answer	Marks
10(a)	A (hair) erector muscle;	3
	B sweat gland ;	
	C fatty tissue ;	
10(b)	any three from:	3
	vasodilation;	
	(which occurs in) arterioles;	
	(therefore) more blood flow to capillaries (at skin surface);	
	(so) more heat lost from the (capillaries at) surface of the skin;	
10(c)	negative;	1

Question	Answer	Marks
11(a)	ionic;	2
	molten ;	
11(b)	metal;	2
	non-metal;	
11(c)(i)	loss of electrons ;	1
11(c)(ii)	$2H^+ + 2e^- \rightarrow H_2$	2
	1 mark for correct symbols ; 1 mark for correctly balanced electrons ;	
11(d)	sodium chloride is ionic ;	3
	chlorine is covalent ;	
	chlorine has weak intermolecular forces/sodium chloride has strong (electrostatic) forces between oppositely charged ions;	

Question	Answer	Marks
12(a)(i)	alpha (particle);	1
12(a)(ii)	reference to 3 half-lives ;	2
	$(140 \times 3 =) 420 \text{ (days)};$	
12(b)(i)	idea that, both samples contain the same number of atoms (as they have the same mass);	3
	atoms in a solid vibrate (about fixed positions) and atoms in a liquid are free to move;	
	atoms in a solid are in a regular arrangement and atoms in a liquid are in a random / irregular arrangement (so take up more space);	

Question	Answer	Marks
12(b)(ii)	evidence of $V = m \div \rho$ or 235 \div 9.4;	2
	$(V=) 25 (cm^3)$;	