## Advanced (Subsidiary) GCE

CHEMISTRY B (SALTERS)
Data Sheet
Specimen

## SPECIMEN



The information in this Sheet is for the use of candidates following Chemistry B (Salters) H035 and H435.

A copy of this sheet is included as an insert with each question paper.
Copies of this sheet may be used for teaching


Adapted from Salters' Advanced Chemistry: Chemical Storylines by George Burton. Reprinted by permission of Harcourt Education.

This document consists of 4 printed pages.

Characteristic infrared absorption in organic molecules

| Bond | Location | Wavenumber/cm ${ }^{-1}$ | Intensity |  |
| :---: | :---: | :---: | :---: | :---: |
| C-H | alkanes | 2850-2950 | M-S | M medium <br> S strong <br> * hydrogen bonded |
|  | alkenes, arenes | 3000-3100 | M-S |  |
|  | alkynes | ca. 3300 | S |  |
| $\mathrm{C}=\mathrm{C}$ | alkenes | 1620-1680 | M |  |
|  | arenes | several peaks in range 1450-1650 | variable |  |
| $\mathrm{C} \equiv \mathrm{C}$ | alkynes | 2100-2260 | M |  |
| $\mathrm{C}=0$ | aldehydes | 1720-1740 | S |  |
|  | ketones | 1705-1725 | S |  |
|  | carboxylic acids | 1700-1725 | S |  |
|  | esters | 1735-1750 | S |  |
|  | amides | 1630-1700 | M |  |
| C-O | alcohols, ethers, esters | 1050-1300 |  | - |
| $\mathrm{C} \equiv \mathrm{N}$ | nitriles | 2200-2260 M | $M \sim$ |  |
| C-F | fluoroalkanes | 1000-1400 S |  |  |
|  | chloroalkanes | 600-800 | $s$ |  |
|  | bromoalkanes | 500-600 |  |  |  |
| O-H | alcohols, phenols | 3600-3640 | S |  |
|  | *alcohols, phenols | 3200-3600 | S (broad) |  |
|  | *carboxylic acids | 2500-3200 | M (broad) |  |
| N-H | primary amines | 3300-3500 | M-S |  |
|  | amides | ca. 3500 | M |  |

## Some useful organic reactions

$1 \mathrm{R}-\mathrm{Br}+\mathrm{CN}^{-} \longrightarrow \mathrm{R}-\mathrm{CN}+\mathrm{Br}^{-}$

2


3


4


5

$6 \mathrm{R}-\mathrm{COOH}+\mathrm{SCl}_{2} \mathrm{O} \longrightarrow \mathrm{R}-\mathrm{COCl}+\mathrm{SO}_{2}+\mathrm{HCl}$


## Chemical shifts for some types of protons $\left({ }^{1} \mathrm{H}\right)$ in NMR spectra

Chemical shifts are for hydrogen $\left({ }^{1} \mathrm{H}\right)$ relative to TMS (tetramethylsilane).
They are typical values and can vary slightly depending on the solvent, concentration and substituents.

| Type of proton | Chemical shift, Sppm | Type of proton | Chemical shift, Sppm |
| :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{3}-\mathrm{C}$ | 0.7-1.6 |  | 6.4-8.2 |
|  | 1.4-2.3 | $-\mathrm{C}-\mathrm{CHO}$ | 9.4-10.0 |
|  | 2.0-2.7 | - $\mathrm{C}-\mathrm{OH}$ | 0.5-4.5* |
| - $\mathrm{CH}-\mathrm{N}$ amines amides | 2.3-2.9 |  | 4.5-10.0* |
|  | 2.3-3.0 | $-\mathrm{C}-\mathrm{NH}$ | 1.0-5.0* |
| -O-CH alcohols esters ethers | 3.3-4.8 | -CO-NH | 5.0-12.0* |
| - $\mathrm{CH}-\mathrm{Cl}$ or Br | 3.0-4.2 | - $\mathrm{CO}-\mathrm{OH}$ | 9.0-15.0* |
| $-\mathrm{CH}=\mathrm{CH}-$ | $4.5-6.0$ | hese signals are outside these lim | variable (sometim and often broad. |

## Monomers of DNA and RNA


phosphate ribose deoxyribose

uracil cytosine


adenine guanine
(thymine has $\mathrm{a}-\mathrm{CH}_{3}$ at position *)

## Copyright Acknowledgements:

[^0]
## The Periodic Table of the Elements



| $\begin{gathered} 140.1 \\ \text { Ce } \\ \text { cerium } \\ 58 \end{gathered}$ | $\begin{gathered} 140.9 \\ \mathrm{Pr} \\ \text { prasedymium } \\ 59 \end{gathered}$ | $\begin{gathered} 144.2 \\ \mathrm{Nd} \\ \text { neodymium } \\ 60 \end{gathered}$ | $\begin{gathered} 144.9 \\ \text { Pm } \\ \text { promethium } \\ 61 \end{gathered}$ | $\begin{gathered} 150.4 \\ \mathbf{S m} \\ \text { samarium } \\ 62 \end{gathered}$ | $\begin{gathered} 152.0 \\ \text { Eu } \\ \text { europium } \\ 63 \end{gathered}$ | $\begin{gathered} 157.2 \\ \text { Gd } \\ \text { gadolinium } \\ 64 \end{gathered}$ | $\begin{gathered} 158.9 \\ \text { Tb } \\ \text { terbium } \\ 65 \end{gathered}$ | $\begin{gathered} 162.5 \\ \text { Dy } \\ \text { dysprosium } \\ 66 \end{gathered}$ | $\begin{gathered} 164.9 \\ \text { Ho } \\ \text { holmium } \\ 67 \end{gathered}$ | $\begin{gathered} 167.3 \\ \text { Er } \\ \text { erbium } \\ 68 \end{gathered}$ | $\begin{gathered} 168.9 \\ \mathbf{T m} \\ \text { thulium } \\ 69 \end{gathered}$ | $\begin{gathered} 173.0 \\ \text { Yb } \\ \text { ytterbium } \\ 70 \end{gathered}$ | $\begin{gathered} 175.0 \\ \text { Lu } \\ \text { lutetium } \\ 71 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 232.0 | [231] | 238.1 | [237] | [242] | [243] | [247] | [245] | [251] | [254] | [253] | [256] | [254] | [257] |
| $\begin{aligned} & \text { Th } \\ & \text { thorium } \\ & 90 \end{aligned}$ | $\begin{gathered} \mathrm{Pa} \\ \text { protacinum } \\ 91 \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ \text { uranium } \\ 92 \end{gathered}$ | $\begin{gathered} \mathbf{N p} \\ \text { neptunium } \\ 93 \end{gathered}$ | $\begin{gathered} \mathrm{Pu} \\ \text { plutonium } \\ 94 \end{gathered}$ | $\begin{gathered} \text { Am } \\ \text { americium } \\ 95 \end{gathered}$ | $\begin{gathered} \text { Curium } \\ 96 \end{gathered}$ | $\begin{gathered} \text { Bk } \\ \text { berkelium } \\ 97 \end{gathered}$ | $\begin{gathered} \text { Cf } \\ \text { californium } \\ 98 \end{gathered}$ | $\begin{gathered} \text { Es } \\ \text { einsteinium } \\ 99 \end{gathered}$ | $\begin{gathered} \text { Fm } \\ \text { fermium } \\ 100 \end{gathered}$ | $\begin{gathered} \mathbf{M d} \\ \text { Menderevium } \\ 101 \end{gathered}$ | $\begin{aligned} & \text { No } \\ & \text { nobelium } \\ & 102 \end{aligned}$ | $\begin{gathered} \text { Lr } \\ \text { lawencium } \\ 103 \end{gathered}$ |


[^0]:    Sources
    Diagram to illustrate protein synthesis adapted from Salters' Advanced Chemistry: Chemical Storylines by George Burton. Reprinted by permission of Harcourt Education.

    Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity.
    OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

