## Advanced GCE

PHYSICS B (ADVANCING PHYSICS)

## Unit G494: Rise and Fall of the Clockwork

 Universe
## Specimen Paper

Candidates answer on the question paper.

Additional Materials:
Data, Formulae and Relationships Booklet Electronic calculator

## SPECIMEN

## G494 QP

Time: 1 hour 15
minutes

Candidate Name


Centre
Number


## Candidate Number



## INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED.


## INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Where you see this icon you will be awarded marks for the quality of written communication in your answer.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.
- The total number of marks for this paper is $\mathbf{6 0}$.

| FOR EXAMINER'S USE |  |  |
| :---: | :---: | :---: |
| Section | Max. | Mark |
| A | 15 |  |
| B | 45 |  |
| TOTAL | 60 |  |

This document consists of 17 printed pages and $\mathbf{3}$ blank pages.

## Answer all the questions.

## Section A

1 Fig 1.1 shows three possible paths, A, B and $\mathbf{C}$, of a spacecraft moving near the Earth, but well above the atmosphere.


Fig. 1.1
(a) Which path follows a gravitational field line of the Earth?
answer
(b) Which path follows a gravitational equipotential line of the Earth?
answer

2 Study the graphs A, B, C, D.

A

B

c

D
(a) Which graph shows the variation in volume ( $y$ ) of a fixed mass of ideal gas at constant pressure with absolute temperature ( $x$ )?
answer
(b) Which graph shows the variation in pressure ( $y$ ) of a fixed mass of ideal gas at constant temperature with volume ( $x$ )?

3 A plastic duck hangs from a long spring. The duck oscillates vertically with a frequency of 0.42 Hz .


The displacement $x$ of the duck at time $t$ is given by the equation
$x=A \cos (2 \pi f t)$
where $A=0.20 \mathrm{~m}$.
Choose the value from the list below which gives the displacement of the duck when $t=2.0 \mathrm{~s}$.

$$
\begin{array}{lll}
0.11 \mathrm{~m} & 0.20 \mathrm{~m} & \begin{array}{l}
-0.11 \mathrm{~m} \\
\text { chosen value }=
\end{array}
\end{array} \begin{aligned}
& -0.20 . . . . . . . . .
\end{aligned}
$$

42.0 mol of an ideal gas is kept at a pressure of $1.5 \times 10^{5} \mathrm{~Pa}$ and a temperature of 310 K . Calculate the volume occupied by the gas under these conditions.

$$
R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

volume $=$ $\qquad$ $\mathrm{m}^{3}$

5 The graph show how the charge on a capacitor varies with p.d. across the capacitor.


Here are a number of values:
440
210
350
700

Use information from the graph to choose from the list the best value for
(a) the capacitance of the capacitor in microfarad
value =
(b) the energy in $\mu \mathrm{J}$ stored on the capacitor when a p.d. of 4.0 V is applied across it.

6 A circus clown fires a water gun that ejects water horizontally at a speed of $7.3 \mathrm{~m} \mathrm{~s}^{-1}$. The water leaves the gun at a rate of $2.7 \mathrm{~kg} \mathrm{~s}^{-1}$.


Fig. 6.1

Explain why the clown holding the gun experiences a backward force of about 20 N .
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

7 Fig 7.1 shows a circuit diagram of a capacitor discharging through a resistor.


Fig. 7.1

A simple mathematical model of the discharge of the capacitor is shown in Fig. 7.2. It is assumed that the current $I$ is constant over each small time interval $\Delta t$. This process is repeated as shown.


Fig. 7.2
(a) Complete the table for the discharge of the $4700 \mu \mathrm{~F}$ capacitor. The small time interval used is $\Delta t=2.0 \mathrm{~s}$.

| $Q$ | $I=\frac{V}{R}=\frac{Q}{R C}$ | $\Delta Q=I \Delta t$ | $Q_{\text {new }}=Q-\Delta Q$ |
| :---: | :---: | :---: | :---: |
| $5.64 \times 10^{-2} \mathrm{C}$ |  |  | $5.16 \times 10^{-2} \mathrm{C}$ |
| $5.16 \times 10^{-2} \mathrm{C}$ |  |  |  |

(b) Suggest one reason why mathematical models are useful in physics.
$\qquad$
$\qquad$
$\qquad$

## BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

## Section B

8 This question is about the time it takes a planet to orbit once around the Sun. This is called the orbital period of the planet.

In this question, the following symbols will be used:
orbital period $T$
mean radius of orbit $R$
mass of Sun $M_{\mathrm{s}}$
mass of planet $M_{p}$


Fig. 8.1
Taken from Measuring the universe, Kitty Ferguson, Reproduced by permission of headline publishing group limited
(a) The seventeenth century astronomer Johannes Kepler (Fig. 8.1) suggested a relationship between the orbital period of a planet $T$ and its radius of orbit $R$.

This relationship can be written as

$$
T^{2} \propto R^{3}
$$

Kepler found this mathematical relationship by trial and error.
Data for four of the planets are shown in Fig. 8.2.


Fig. 8.2
State which features of the graph show that $T^{2}$ is proportional to $R^{3}$.
$\qquad$
$\qquad$
$\qquad$
(b) Isaac Newton (Fig. 8.3) developed a description of gravity that confirmed Kepler's work.

Newton's confirmation of Kepler was based on his laws of motion and his gravitational law.


Fig 8.3

The centripetal force on a planet of mass $M_{\mathrm{p}}$ orbiting with period $T$ at radius $R$ is given by $F=-M_{\mathrm{p}}(2 \pi)^{2} / T^{2} R$
Use Newton's Gravitational Law $\mathrm{F}=-G M_{\mathrm{p}} M_{\mathrm{s}} / R^{2}$ to show that $T^{2} / R^{3}=(2 \pi)^{2} / G M_{\mathrm{s}}$ and hence find the mass of the Sun.

$$
G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
$$

Mean radius of Earth's orbit $=1.5 \times 10^{11} \mathrm{~m}$ 1 year $=3.2 \times 10^{7} \mathrm{~s}$
(c) The Sun loses mass at a rate of $6.2 \times 10^{11} \mathrm{~kg} \mathrm{~s}^{-1}$. Discuss whether this will have had any significant affect on the orbit the Earth over the 40000 years that humans have made an impact on the planet.

You will be awarded marks for the quality of your written communication.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(d) Although Kepler's findings were hugely important, Newton's are considered to be more significant.

Give one reason why Newton's approach is considered an advance on Kepler's approach.
$\qquad$
$\qquad$
$\qquad$

9 This question is about heating soup with microwaves.


Fig. 9.1
(a) The microwave oven supplies energy to the soup at a rate of 600 W .

The soup, of mass 0.40 kg , has an initial temperature of $20^{\circ} \mathrm{C}$.
Show that, after three minutes, the maximum temperature will be about $85^{\circ} \mathrm{C}$.
specific thermal capacity of soup $=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(b) The Boltzmann factor is given as $f=e^{-E / k T}$. Describe what the Boltzmann factor indicates and use it to explain why increasing numbers of molecules evaporate from the soup as its temperature rises.

You will be awarded marks for the quality of your written communication.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) The soup container has a tight fitting lid on it.

As the temperature rises:
the number of molecules in the vapour increases
the average speed of the molecules in the vapour increases.
Use ideas about momentum to explain why the growing number of molecules in the vapour and the increase in average speed of the molecules both increase the pressure of the vapour.
$\qquad$

10 This question is about some of the physics of the human ear.


Fig. 10.1
A given sound wave striking the ear drum sets it oscillating in simple harmonic motion.
The ear drum oscillates at a frequency of 2500 Hz with an amplitude of $1.0 \times 10^{-7} \mathrm{~m}$.
(a) (i) Calculate the period of the oscillation.
(ii) On the axes of Fig. 10.2, draw a graph to show how the displacement of the eardrum varies with time for one oscillation. Assume that the displacement is zero at $t=0$.


Fig. 10.2
(iii) Calculate the maximum acceleration of the ear drum.
acceleration $=$ $\qquad$ $\mathrm{m} \mathrm{s}^{-1}$ [2]
(iv) Mark on the graph on Fig. 10.2 a point at which this maximum acceleration occurs. Mark this point a.
(b) The resonant frequency of the human auditory canal Is around 3000 Hz , which makes the human ear most sensitive at those frequencies.

Explain clearly what this statement means, and suggest circumstances in which lower or higher resonant frequencies might be expected in humans or other mammals.

You will be awarded marks for the quality of your written communication.
$\qquad$

11 This question is about calculating the age of stars using the radioactive decay of uranium-238.
(a) A sample containing $1.0 \times 10^{-6} \mathrm{~kg}$ of uranium- 238 contains $2.5 \times 10^{18}$ uranium- 238 atoms. The activity of the sample is 12 Bq .

Show that the half-life of uranium- 238 is about 4.5 billion years.

$$
1 \text { year }=3.2 \times 10^{7} \mathrm{~s}
$$

(b) A small sample of rock contains 10 atoms of uranium-238. Estimate, without calculation, the number of atoms of uranium-238 that would have been present in that rock at the time when the Solar System is believed to have formed, 5.6 billion years ago, and explain how you obtained that estimate.

Explain clearly why a precise calculation would not have given an accurate answer of the number originally present.
(c) Astronomers have observed the spectrum of a very old nearby star to determine how much uranium-238 it contains. This value is compared with the amount that is thought to have been present when the star was formed.

Recent observations suggest that the amount of uranium-238 in the star has fallen to $12 \%$ of its original value.

Calculate the age of the star in years.
age of star =
$\qquad$
(d) The Hubble Law, based on observation of cosmological red shifts, suggest that the universe is much older than the age of the stars measured by finding how much uranium-238 it contains.

Explain the meaning of the term cosmological red shift.
(e) The Hubble Law suggests that the age of the universe is of the order $1 / H_{0}$ where $H_{0}$ is the Hubble parameter. Estimating the value of $H_{0}$ is an extremely important task. Values for $H_{0}$ have ranged from $1.6 \times 10^{-18} \mathrm{~s}^{-1}$ to $3.2 \times 10^{-18} \mathrm{~s}^{-1}$.
(i) Estimate the minimum and maximum age of the universe in years from the value of $H_{0}$.

```
minimum age =
```

$\qquad$

``` years
maximum age \(=\)
``` \(\qquad\)
(ii) Explain how data from the uranium- 238 method of finding the age of stars can be used to help astronomers choose between these values of \(H_{0}\).

\section*{Copyright Acknowledgements:}

\section*{Sources}

Fig 8.1 Taken from Measuring the universe, by Kitty Ferguson. Reproduced by permission of headline publishing group limited.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

BLANK PAGE

BLANK PAGE
\[
20
\]

BLANK PAGE

\section*{PHYSICS B (ADVANCING PHYSICS)}

Unit G494: Rise and Fall of the Clockwork Universe
Specimen Mark Scheme
The maximum mark for this paper is \(\mathbf{6 0}\).

This document consists of 4 printed pages and 4 blank pages.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Section A} \\
\hline Question Number & Answer & Max Mark \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \mathrm{B} \checkmark \\
& A \checkmark
\end{aligned}
\] & \begin{tabular}{l}
[1] \\
[1]
\end{tabular} \\
\hline \begin{tabular}{l}
2(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \mathrm{A} \checkmark \\
& B \vee
\end{aligned}
\] & \[
\begin{aligned}
& {[1]} \\
& {[1]}
\end{aligned}
\] \\
\hline 3 & A \(\checkmark\) & [1] \\
\hline 4 & \[
\begin{aligned}
& \checkmark \text { method: } V=2 \times 8.3 \times 310 / 1.5 \times 10^{5} \\
& \checkmark \text { evaluation: }=3 / 2 \times 10^{-2} \mathrm{~m}^{3}
\end{aligned}
\] & [2] \\
\hline \begin{tabular}{l}
5(a) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \mathrm{A} \checkmark \\
& C \checkmark
\end{aligned}
\] & \begin{tabular}{l}
[1] \\
[1]
\end{tabular} \\
\hline 6 & Calculation of rate of change \(=2.7 \times 7.3=19.7 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \checkmark\) Force on clown is rate of change of momentum Clear Newton III/ conversation of momentum argument \(\checkmark\) & [3] \\
\hline \begin{tabular}{l}
\[
7(a)
\] \\
(b)
\end{tabular} & \begin{tabular}{l}
First line of table: \(2.4 \times 10^{-3}, 4.8 \times 10^{-3} \checkmark\) \\
2nd line of table: \(2.2 \times 10^{-3}, 4.4 \times 10^{-3}, 4.7 \times 10^{-2} \checkmark\) \\
Any sensible point \(\checkmark\) : e.g. to test theories against real situations, to predict outcomes when experimental evidence is not available.
\end{tabular} & \begin{tabular}{l}
[2] \\
[1]
\end{tabular} \\
\hline & Total Section A & [15] \\
\hline \begin{tabular}{l}
(b) \\
(d)
\end{tabular} & \begin{tabular}{l}
Straight line \\
\(M_{\mathrm{p}}(2 \pi)^{2} / T^{2} R=G M_{P} M_{s} / R^{2}\) worked through to \(T^{2} / R^{3}=(2 \pi)^{2} / G M_{\mathrm{s}}\) \\
rearrangement to find \(M_{\mathrm{s}}\) \\
Substitution of correct values \(M_{\mathrm{s}}\) \\
Calculation to give \(M_{\mathrm{s}} \quad \checkmark\) ecf possible
\[
M_{s}=4 \pi^{2}\left(1.5 \times 10^{11}\right)^{3} /\left(6.67 \times 10^{-11} \times\left(3.2 \times 10^{7}\right)^{2}\right)=1.8 \times 10^{30} \mathrm{~kg}
\] \\
Kepler's ( \(3^{\text {rd }}\) ) Law was empirical/ Newton's (gravitational) was analytical Kepler's law was limited to orbits / Newton's is applicable to wider applications e.g. tides, space flight \(\checkmark\) \\
Any one point. Must be comparison between K's approach and N's approach for the mark
\end{tabular} & \begin{tabular}{l}
[2] \\
[4] \\
[1]
\end{tabular} \\
\hline & Total & [10] \\
\hline \begin{tabular}{l}
9(a) \\
(b) \\
(c)
\end{tabular} & \begin{tabular}{l}
Calculating energy as 108 kJ (can be implicit) \\
Temp change calculated to 65 K \\
BF gives proportion of particles with sufficient energy to join vapour/ probability of a particle having sufficient energy. \\
As T increases -E/kT becomes smaller therefore BF increases \(\checkmark\) Therefore greater chance/proportion of molecules entering vapour state \\
QWC: appropriate form and style \\
Pressure exerted by molecular collisions, force given by \(\Delta \mathrm{p} / \Delta \mathrm{t}\). \(\checkmark\) \\
Pressure given by F/A \(\checkmark\) \\
Increase in number of molecules increases \(\Delta \mathrm{p} / \Delta \mathrm{t}\). \\
Increase in temperature increases \(\Delta \mathrm{p} / \Delta \mathrm{t}\).
\end{tabular} & [2]
[4]
[4] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Section A} \\
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} & Answer & \begin{tabular}{l}
Max \\
Mark
\end{tabular} \\
\hline \multirow[t]{2}{*}{} & \begin{tabular}{l}
QWC: Clear organised answer \\
There will be a number of paths to mark-worthy points. \\
High quality answers needed for award of marks.
\end{tabular} & \\
\hline & Total & [10] \\
\hline \begin{tabular}{l}
10(a)(i) \\
(ii) \\
(iii) \\
(iv) \\
(b)
\end{tabular} & \[
\begin{aligned}
& \qquad \begin{array}{l}
\text { Period }=1 / 2500=4 \times 10^{-4} \mathrm{~s} \checkmark \\
\text { a }=4 \pi^{2} \times 1 \times 10^{-7} \checkmark \quad \text { Period } \checkmark \text { amplitude } \checkmark \text { sinusoidal shape } \checkmark \\
\\
\text { Mark on crest or trough } \checkmark \\
\text { driving frequency matches natural frequency of oscillator } \checkmark \\
\text { amplitude of oscillations at resonance will be greater for a specific } \\
\text { amplitude of driving wave. } \checkmark \\
\text { Suggested circumstances should consider and justify variations in the } \\
\text { auditory canal e.g. longer a.c. gives lower resonant frequency or changes } \\
\text { in speed of sound (due to density of medium) in e.g. less dense air, water } \\
\text { Stated and justified difference in a.c. / medium } \checkmark \\
\text { Consisten explanation of consequence } \checkmark \\
\text { Clear understanding must be displayed. } \\
\text { QWC: clear organisation } \checkmark
\end{array}
\end{aligned}
\] & \begin{tabular}{l}
[1] \\
[3] \\
[2] \\
[1] \\
[5]
\end{tabular} \\
\hline & Total & [12] \\
\hline \begin{tabular}{l}
11(a) \\
(b) \\
(c) \\
(d) \\
(e)(i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
Calculating \(\lambda=4.8 \times 10^{-18} \checkmark\) \\
Half life \(=0.693 /=1.44 \times 10^{17} \mathrm{~s} \checkmark\) \\
\(=4.5\) billion years \\
Allow implicit working \\
Stating 5.6 is a little more than a half life \(\checkmark\) \\
Initial number is a bit more than double 10 (accept 21 to 25) \(\checkmark\) \\
Reason why estimate is the best that can be done: \\
Radioactive decay is random \(\checkmark\) \\
Need large numbers in random processes for predictable results \(\checkmark\).
\[
\begin{aligned}
& 0.12=e^{-\lambda t} \rightarrow \ln 0.12=-4.8 \times 10^{-18} \mathrm{t} \\
& =1.4 \times 10^{10} \text { years } \checkmark \text { method } \checkmark \text { evaluation }
\end{aligned}
\] \\
Allow ecf for evaluation mark \\
1 mark for time in seconds \\
Lengthening of wavelength with expansion of space \(\checkmark\) \\
Allow energy arguments.
\[
\operatorname{Min}=9.8 \times 10^{9} \mathrm{yr} \checkmark \max =1.9 \times 10^{10} \mathrm{yr} \checkmark
\] \\
Allow values in seconds \\
Shows younger age is not correct \(\checkmark\)
\end{tabular} & [3]
[4]

[2]
[1]
[2]
[1] \\
\hline & Total & [13] \\
\hline & Section B Total & [45] \\
\hline & Paper Total & [60] \\
\hline
\end{tabular}

\section*{Assessment Objectives Grid (includes QWC)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Question & A01 & AO2 & AO3 & QWC & Total \\
\hline 1 & 2 & & & & 2 \\
\hline 2 & 2 & & & & 2 \\
\hline 3 & & 1 & & & 1 \\
\hline 4 & 1 & 1 & & & 2 \\
\hline 5 & 1 & 1 & & & 2 \\
\hline 6 & 1 & 2 & & & 3 \\
\hline 7 & & 2 & 1 & - & 3 \\
\hline 8(a) & & & 2 & & 2 \\
\hline 8(b) & & 4 & & & 4 \\
\hline 8(c) & & & 2 & 1 & 3 \\
\hline 8(d) & & & 1 & & 1 \\
\hline 9(a) & 1 & 1 & & & 2 \\
\hline 9(b) & & 3 & & 1 & 4 \\
\hline 9(c) & 2 & 2 & & & 4 \\
\hline 10(a) & 3 & 4 & & & 7 \\
\hline 10(b) & & & 4 & 1 & 5 \\
\hline 11(a) & 3 & & & & 3 \\
\hline 11(b) & 1 & 3 & & & 4 \\
\hline 11(c) & 1 & 1 & & & 2 \\
\hline 11(d) & 1 & & & & 1 \\
\hline 11(e) & & 2 & 1 & & 3 \\
\hline Totals & 19 & 27 & 11 & & 60 \\
\hline
\end{tabular}

BLANK PAGE

BLANK PAGE

BLANK PAGE

BLANK PAGE```

