	SPECIMEN
Advanced Subsidiary GCE G492 QP PHYSICS B (ADVANCING PHYSICS) Unit G492: Understanding Processes,	
Specimen Paper Candidates answer on the question paper. Additional Materials:	Time: 2 hours
Data, Formulae and Relationships Booklet Electronic calculator	
Candidate Name	
Centre C Number N	andidate umber
 INSTRUCTIONS TO CANDIDATES Write your name, Centre number and Candidate number Answer all the questions. Use blue or black ink. Pencil may be used for graphs a Read each question carefully and make sure you know to do before starting your answer. Do not write in the bar code. Do not write outside the box bordering each page. WRITE YOUR ANSWER TO EACH QUESTION IN THE S PROVIDED. INFORMATION FOR CANDIDATES The number of marks is given in brackets [] at the end each question or part question. INFORMATION see this icon you will be awarded marks of written communication in your answer. You may use an electronic calculator. You are advised to show all the steps in any calculation The total number of marks for this paper is 100. 	er in the boxes above. Ind diagrams only. What you have SPACE of a for the quality A 20 B 40 C 40 TOTAL 100 IN IN IN IN IN IN IN IN IN IN
This document consists of 25 printed page	es; 3 blank pages and an Insert.

C The observed path is the only one along which the momentum of the photon is unchanged. answer

answer......[1]

4 4 This question is about a TV remote control device. (a) The light emitting diode (LED) of a remote control for a TV set emits pulses of radiation of frequency 3.2 x 1014 Hz. Calculate the energy of each photon of this radiation. the Planck constant $h = 6.6 \times 10^{-34} \text{ Js}$ photon energy =J [1] (b) The sensor in the TV set will respond to a pulse of radiation from the remote control when the signal power received during the pulse is at least 1.0×10^{-7} W. Calculate the minimum rate at which photons arrive during the pulse.

rate = photons per second [2]

5 Fig. 5.1 shows a human reflex test.

The tester, \mathbf{A} , holds the top of a £20 note, while the person being tested, \mathbf{B} , holds his hand still, with thumb and forefinger apart and level with the bottom of the note.

Without warning, **A** releases the note.

B must grasp it before it has passed through his fingers.

Fig. 5.1

The length of a £20 note is 150 mm.

B has a reaction time of 0.2 s. Can he catch the note? Neglect any effects of air resistance, and show your working clearly.

$$g = 9.8 \text{ ms}^{-2}$$

[3]

[Turn Over

7 Fig. 7.1 shows a beam supported on two blocks a distance x apart.

In an experiment, the distance y that the beam sags when a fixed weight W is hung from its centre is measured for different values of the distance x between the blocks.

Here is a set of measurements.

<i>x</i> / m	<i>y</i> / m
0.90	0.080
0.70	0.037
0.50	0.014

A student wishes to check if the relationship between y and x in this experiment is of the form $y = kx^2$ where k is a constant.

Propose and carry out a test to check if the **data** support the relationship.

test proposed	working
State your conclusion.	
	[3]
	Section A Total [20]
	[Turn Over

7

9 (c) The timed section of the course is 100 m long and drops a vertical distance of 26 m. The angle of the slope is 15 degrees to the horizontal. 🔊 100 m 26 m 15° weight Fig. 8.2 Fig. 8.2 shows a skier of mass 72 kg travelling down the timed section of the course. (i) Calculate the weight of the skier. $g = 9.8 \text{ N kg}^{-1}$ weight =N [1] (ii) By scale drawing or some other method of your choosing, calculate the component of the weight in the direction parallel to the slope. [2] (iii) The speed of the skier through the timed section is constant. Explain how this can be so.

[1] Total [8] [Turn Over

A thin, parallel beam of light of a single wavelength falls on a diffraction grating, as shown in Fig. 9.1.

Fig. 9.1

Fig. 9.2

Light passes through the grating and a regular pattern of light and dark regions is observed on the screen.

(a) Fig. 9.2 shows how the intensity pattern varies across the central region of the screen.

(i) Describe the main features of the intensity pattern shown in Fig. 9.2.

(ii) Explain the difference in intensity between points **A** and **B** in the pattern (Fig. 9.2), using the idea of **superposition** of waves.

[3]

[1]

10 This question is about wave energy.

Fig. 10.1 shows a group of waves travelling across the sea towards a beach.

velocity of group of waves = 12 m s^{-1}

each 1 m^2 of the sea surface carries energy towards the shore at 12 m s^{-1}

Fig. 10.1

(a) The energy ε carried by every 1 m² of surface of the sea is given by

 $\varepsilon = \frac{1}{2} g\rho x^2$

where *g* is the gravitational field strength

 ρ is the density of the sea water

and *x* is the amplitude of the waves in the group.

Show that $\frac{1}{2} g\rho x^2$ has the units J m⁻². Take the units of g as N kg⁻¹.

[Turn Over

11 This question is about the quantum behaviour of photons.

Yellow light of a single wavelength falls on the vertical surface of a soap film.

Photons of the light reflect from the film and horizontal bands can be seen in the soap film, as shown in Fig. 11.1. The bands are alternately yellow and black.

(a) Fig. 11.2 shows how the **percentage** of incident photons **reflected** by the film varies as its thickness changes.

Use the information in Fig. 11.2 to describe in words how the percentage of photons reflected varies with the thickness of the soap film.

 \mathscr{I} You will be awarded marks for the quality of your written communication.

[4]

(b) An incident photon can reflect off either the front or back surface of the soap film to reach the detector. If it does not reflect, it will pass through the film (Fig. 11.3).

Some photons reach the detector after reflecting from two different places on the film where the film thickness is x and y.

Rotating phasors for the two paths of a photon reaching the detector are shown below, for the two thicknesses of film. (scale: 1 cm represents amplitude 2.0)

(i) By scale drawing or some other method of your choosing, calculate the magnitude of the **resultant** phasor amplitude in each case.

Each phasor has an amplitude of 2.0.

thickness x

thickness y

- resultant phasor amplitude =..... resultant
 - resultant phasor amplitude =
- [3]
- (ii) Show that the **probability** of photons being reflected from film of thickness x is **twice** that from film of thickness y.

[2]

(iii) At certain thicknesses of film, dark bands are produced indicating that few, if any, photons are reflected there.

How do you account for this?

[2] Total [11] Section B Total [40] [Turn Over

16

Section C

The questions in this section are based on the Advance Notice material.

- **12** This question is about uncertainties and errors in measurements in science.
 - (a) The situations below involve random uncertainty, systematic error or both. In each case, discuss which are present and explain their effect on the measurements made.
 - (i) Timing an eclipse of the Moon, which lasts about two hours, using a clock which runs slightly 'fast', recording a day as slightly more than 24 hours.

(ii) Measuring the length of a room with an accurate steel measuring tape.

[2]

(b) For **one** of the two measurements (i) and (ii) above, suggest how a better measurement could be made.

[2]

PLEASE DO NOT WRITE ON THIS PAGE

[Turn Over

13 The table below gives some measurements of the velocity of light, *c*.

year	experimenter	observed velocity/ km s ⁻¹
1875	Cornu	299 990 ± 200
1880	Michelson	299 910 ± 150
1883	Michelson	299 850 ± 60
1906	Rosa-Dorsey	299 784 ± 10
1928	Middelstaedt	299 778 ± 10
1932	Michelson with others	299 774 ± 4
1941	Anderson	299 776 ± 6
1951	Bergstrand	299 793.1 ± 0.3

The graph opposite shows these measurements.

- (a) Explain why the speed of light is difficult to measure.
- (b) The American physicist Albert Michelson was famous for his skills in measurement. Explain how the table and the Advance Notice article show this.

You will be awarded marks for the quality of your written communication.

[4]

[2]

(c) In 1973, the recommended value of the velocity of light was 299 792 458 \pm 1 m s⁻¹. explain why it is now defined to be exactly 299 792 458 m s⁻¹.

[1]

(d) The velocity of light is now defined as 299 792.458 km s⁻¹. Draw a horizontal line on your graph to indicate this defined value. Which experimenters appear to have underestimated the uncertainties in their experiments?

[2]

Total [9]

PLEASE DO NOT WRITE ON THIS PAGE

14 This set of data is about the motion of a trolley down a ramp as shown in the diagram below. The experiment was carried out by two AS students, Fiona and Tom.

mass of trolley m	0.992 kg
"mask" width w	10.0 cm
runway length s	1.20 m

One end of the runway was raised to a height h. The trolley had a mass of 0.992 kg and had a card 'mask' of width 10.0 cm mounted on it. The time t taken for the card mask to pass through a light gate at the bottom of the 1.20 m long ramp was measured.

height	Time
<i>h</i> / cm	t/s
4.0	0.164
6.0	0.113
8.0	0.091
10.0	0.078
12.0	0.071
16.0	0.061
20.0	0.053

- (a) The trolley was initially released from a height of 4 cm.
 - (i) Show that angle that the ramp makes with the horizontal when h = 4.0 cm is about 2°.

[2]

(ii) In the first measurement, when h = 4.0 cm and t = 0.164 s, show that the velocity of the trolley as it passed through the light gate was 0.610 m s⁻¹.

(iii) Explain clearly why the velocity in (a)(ii) can be quoted to three significant figures, but not four.

[2]

(b) (i) The height was measured to the nearest 0.1 cm.Calculate the percentage uncertainty in measuring the height for *h* = 4.0 cm.

[2]

(ii) Explain why the percentage uncertainty in measuring the height will be reduced as the ramp is raised.

[2]

(iii) Describe how the uncertainty in measuring the time for the trolley with the 10.0 cm card to pass through the light gate could be reduced.

You will be awarded marks for the quality of your written communication.

15 Fiona suggests that the data in their experiment obeys the mathematical model

 $v^2 = kh$

23

where k is a constant.

height	time	velocity	(velocity) ²
<i>h</i> /cm	<i>t</i> /s	<i>v</i> /m s⁻¹	<i>v</i> ²/m² s⁻²
4.0	0.164	0.61	0.37
6.0	0.113	0.88	0.78
8.0	0.091	1.1	1.2
10.0	0.078	1.3	
12.0	0.071	1.4	
16.0	0.061	1.6	
20.0	0.053	1.9	

- (a) (i) Calculate values of v^2 and add them to the table above. The first three have been done for you. [1]
 - (ii) Plot a graph of v^2 (vertically) against *h* (horizontally) on the axes below.

Ensure that the axes are correctly labelled.

	(iii) Does the data support the relationship $v^2 = kh$? Justify your answer.
	[2]
(b)	Tom expects the kinetic energy gained by the trolley to be equal to the loss of gravitational potential energy.
	By considering the loss of gravitational potential energy and gain of kinetic energy when the trolley drops through a height of 4.0 cm, check Tom's theory and account for the results.
	$g = 9.8 \text{ m s}^{-2}$
	[5]
	Fotal [12] Section C Total [40]
	Paper Total [100]

Copyright Acknowledgements:

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2007

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

PHYSICS B (ADVANCING PHYSICS) G492 MS

Unit G492: Understanding Processes and Experimentation and Data Handling

Specimen Mark Scheme

The maximum mark for this paper is 100.

Section A		
Question Number	Answer	Max Mark
1 (a)	BV	[1]
(b)		[1]
2	B✓	[1]
3 (a)	20 ✓ (m s ⁻¹)	[1]
(b)	0.5 ✓ (s)	[1]
(c)	$(20 \times 0.5) + (1/2 \times 20 \times 3.5) \checkmark m = 45 \text{ (m)} \checkmark e$ 45 m $\checkmark \checkmark$	[2]
4 (a)	energy (= 6.6 x 10^{-34} x 3.2 x 10^{14}) = 2.1 x 10^{-19} \checkmark (J)	
. ()	2 or 3 S.F. only	[1]
(b)	$(1.0 \times 10^{-7})/(2.1 \times 10^{-19}) \checkmark = 4.8 \times 10^{11} \checkmark \text{ ecf from (a)}$	
		[2]
5	Either s = $\frac{1}{2}at^2 \Rightarrow t^2 = (2 \times 0.15)/9.8 \Rightarrow t = 0.18 \text{ s } \sqrt{m} \sqrt{e}$	
	Or directly using t = 0.2 s to find s = 0.196 m \checkmark method \checkmark evaluation	
	allow g = 10 N kg ⁻¹ , giving t =0.17 s or s = 200 mm	
	then explaining why he can't catch the note \checkmark	[3]
6(a)	$F = 10\ 000\ x\ 3.1\ \checkmark\ = 31\ 000\ \checkmark\ (N)$	[2]
(b)	weight = 75 000 – 31 000 = 44 000 (N) ✓	[1]
(c)	$g = 44\ 000\ /\ 10\ 000 = 4.4\ \checkmark\ (N\ kg^{-1})\ ecf\ from\ (b)$	
	no ecf if g = 9.8 N kg ⁻¹ assumed in (b)	[1]
7	test proposed e.g. calculate $k = y/x^2$ to see if constant, \checkmark	
	carried out on all data ✓ conclusion based on test: not constant	
	(Values 0.099,0.076,0.056) <u>because</u> variation too great/value of k gets progressively smaller so not random variation \checkmark	
	test can be implicit in working	[3]
	Section A total	[20]
8(a)	$v^2 = 2gh$ approach $v^2 = 2 \times 9.8 \times 169 \checkmark v = 58 \checkmark (m s^{-1})$	[2]
(b)	$v = 100/2.12 = 47 \text{ m s}^{-1} \checkmark$	[~]
()	$47 \text{m s}^{-1} = 47 \times 60 \times 60 / 1000 \text{ km h}^{-1} = 170 \text{ km h}^{-1} \text{ (> 160 km h}^{-1}) \text{ (> }$	[2]
(c)(i)	weight = 72 x 9.8 = 710 N ✓ (accept 2 or 3 S.F.)	
	Accept use of $g = 10 \text{ N kg}^{-1}$ to give 720 N	[1]
(ii)	Scale drawing: 15° right-angled triangle with opposite side shown as	
	weight (ecf from (c)(i) \checkmark hypotenuse correctly measured to scale	
	ar 710 sin 15° $\sqrt{-180}$ k $\sqrt{-66}$ from (c)(i)	101
	balanced forces idea (regultant force = zoro)	[2]
(iii)	argued in terms of forces	[1]
	Total	['] [0]
9 (a)(i)	Any three points from:	႞၀]
	symmetrical about central max	
	central maximum is brightest	
	intensity decreases with 'order'	
	maxima are equally spaced	
	peaks (much) narrower than spacing $\sqrt{\sqrt{4}}$	[3]

Section B		
Question Number	Answer	Max Mark
(ii)	A: constructive interference/waves add/waves superimpose IN PHASE / path difference is a whole number of λ /AW AND	
	B: destructive interference/waves cancel/ waves in ANTIPHASE (out of phase)/ pd is an odd number of half wavelengths \checkmark	[1]
(b)(i)	$1 / 80\ 000$ or $(1 \times 10^{-3})/80 \checkmark (= 1.25 \times 10^{-5}m)$	[1]
(ii)	tan θ = 0.06 / 1.2 \Rightarrow θ = 2.86 ° \checkmark method \checkmark evaluation	
	AW e.g. Pythagoras and then find sin θ from the triangle for $\checkmark\checkmark$	
	allow tan θ = sin θ if reason given e.g. angles small	
	$\lambda = 1.25 \times 10^{-5} \times \sin 2.9^{\circ} \checkmark = 6.3 \times 10^{-7} \text{ m} \checkmark \text{ [deduce 2nd mark if}$	
	no unit] (allow use of 2° giving 6.5 x 10^{-7})	F 4 1
	(allow use of 3 giving 0.3 x 10)	[4]
(0)	e a more lines $mm^{-1} \sqrt{larger}$ spacing between maxima to measure $$	
	or move screen further \checkmark smaller % error in distances \checkmark	
	measure to higher order ✓ smaller % error in distances√	
		[2]
	Total	[11]
10	N/kg x kg/m ³ x m ² = N m ⁻¹ \checkmark (beware fudge)	
(a)	J = N m so J m ⁻² = N m m ⁻² = N m ⁻¹ \checkmark or reverse working from N=J/m	
	Stages must be shown clearly	[2]
(b)(i)	0.9 m ✓	[1]
(ii)	$\frac{1}{2} \times 9.8 \times 1030 \times (0.9)^2 \checkmark = 4090 \checkmark (J \text{ m}^{-2}) \sim 4100$	501
()	ect from (b)(l)	[2]
(11)	$4090 \times 12 = 49000 \approx 50 \text{ kVV} = 24500 000 = 245 \text{ MW} = 26000 \text{ s}^{-2}$	Г 4 1
(54)	$49000\times500\text{v}$ = 24 500 000 = 24.5 MWV v ecl	[4] [4]
(1V)		[1]
44(-)	I Otal	ניטן
i i (a)	Between 0% and 16%	
	One of: cvclic/repeating / equally spaced / no sign of dving out	
	QWC: spelling, punctuation & grammar√	[4]
(b)(i)	x: resultant phasor amplitude = 4 ✓	
	y: resultant phasor amplitude = $(4 + 4)^{\frac{1}{2}}$ = 2.8 \checkmark method \checkmark evaluation	
	(scale drawing tolerance 2.6 to 3.0)	
	for missing scale factor (x=2, y = 1.4) 2 marks max	[3]
(ii)	prob related to $(\text{amplitude})^2$ idea \checkmark 16 for x, 8 for y \checkmark	
	4 for x, 2 for $y \checkmark (ecf)$ from (b)(i)	[0]
/:::>	Phasars antiphasa /	[4]
(11)	so prob / resultant phasor amplitude = $0 \checkmark (auantum explanation only)$	
	'photons' are out of phase gets no marks	[2]
	Total	[11]
	Section B total	[40]

Section C		
Question Number	Answer	Max Mark
12(a)(i)	Any two points from:	
	Systematic error (clock 'second' is wrong) ✓	
	Random uncertainty due to reaction time is negligible \checkmark	
	Effect is to give an answer which is too great ✓	[2]
(ii)	Any two points from:	
	No/ negligible(e.g. effect of temperature) systematic error ✓	
	Random uncertainty e.g. alignment problems, varying length at different places ✓	
	Effect is to give greater confidence in the length than is justified by the measurement \checkmark	[2]
(b)	(i) Use more accurate clock /correct for incorrect duration by comparing with accurate time signal \checkmark ; get several people to measure	
	simultaneously, and plot data to find mean/median/ reject outliers	
	OR (II) repeat measurement several times along different parallel lines $\sqrt{2}$	
	NOT just repeat measurement	[2]
	Total	[6]
13(a)	(very fast therefore) need large distance \checkmark very short interval to time \checkmark	[2]
(b)	Any three points from:	
(5)	Very large \checkmark reduction in uncertainties \checkmark	
	Progression over many years ✓	
	Up to two examples of creative approach can be each \checkmark if distinct and explained, e.g. octagonal mirror, allowing for effect of air, doing in	
	QWC: appropriate form and style \checkmark	[4]
(c)	uncertainties in the metre greater than in λf measurement \checkmark	[1]
(d)	Horizontal line within one scale division of 299 790 \checkmark	
(4)	Michelson, Middelstaedt, Anderson and Bergstrand \checkmark	
	All 4 names needed	[2]
	Total	[8]
14 (a)(i)	Angle = $\sin^{-1}(4 \ 0/120) \sqrt{120} = 1.9^{\circ} \approx 2^{\circ} \sqrt{120}$ Must show a calculated result	<u> </u>
(~/('/	not just quote 2° , for the second mark.	[2]
(ii)	$v = w/t = 0.100\sqrt{0.164} = 0.610 \text{ m s}^{-1}$ (Can be reverse argument from	
	0.610 m s ⁻¹)	[2]
(iii)	Both measurements used are to 3 S.F.	[0]
(b)(i)	(0.1/4.0) x 100 = 2.5% x m/e	[2]
(0)(1)	$(0, 1/7, 0)^{\circ} (00 = 2.070 + 104 C$	[4] [2]
(11)	Absolute uncertainty in height same v smaller fraction v or height	[2]
(111)	Repeat several times * and take averages *	[3]
	Total	[12]
	I Otal	נייזן

Section C		
Question Number	Answer	Max Mark
Question Number 15 (a)(i) (ii) (iii) (b) (b) 4 3.5 3 2.5 3 2.5 1.5 1.5	Answer $\sqrt[3]{/m^2 s^2}$ (0.37)(0.78)(1.2)1.72.02.63.6	Max Mark [1] [4] [6]
0.5		
0	5 10 15 20 25 <i>h/c</i> m	
	Total	[12]
	Section C total	[40]
	Paper Total	[100]

Question	AO1	AO2	AO3	QWC	Total
1	2				2
2		1			1
3	4				4
4	2	1			3
5	1	2			3
6	4				4
7		1	2		3
8(a)	1	1			2
8(b)	1	1			2
8(c)	3	1			4
9(a)	2	2			4
9(b)	5				5
9(c)			2		2
10(a)		2			2
10(b)	4	4			8
11(a)	1	2		1	4
11(b)	3	4			7
12(a)			4		4
12(b)			2		2
13(a)			2		2
13(b)			3	1	4
13(c)			1		1
13(d)			2		2
14(a)	3		3		6
14(b)		1	5	1	7
15(a)		6	1		7
15(b)	3	2			5
Totals	39	31	27		100

Assessment Objectives Grid (includes QWC)